Reference Source Noise in Frequency Synthesizer

Paul BECHET

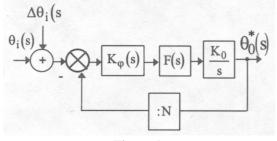
Land Forces Academy, Communications Department 2400 Sibiu, Romania

Abstract: The phase noise performance of a synthesizer can be described using a simplified model. In this model we consider reference noise components that appears at the system output. The dynamic behavior of system will be analyzed by simulation using the Simulink package.

I. Mathematical model

One measure of system performance is the steady-sate error, that is, the error remaining after transients have died out. We will be calculated and represented the transient phase error sample sequence as a function of the system parameters.

A synthesizer block diagram for analyzes the output error we purpose in figure 1.



where:

 $K_{\varphi}(s)$ - is the phase detector gain factor, F(s) - the filter transfer function,

- K₀ the controlled oscillator gain factor,
- $\frac{1}{N}$ the programmable divider transfer

function,

 $\Delta \theta_0(s)$ - the reference noise and,

 θ_0^* - is the output signal phase in the presence of the reference noise.

We can write:

$$\theta_0^* = \frac{K_0 K_{\varphi}(s) F(s)}{s} \left[\theta_i(s) + \Delta \theta_i(s) - \frac{\theta_0^*}{N} \right] \quad (1)$$

or:

$$\theta_0^* = \frac{K_0 K_\varphi(s) F(s)}{s + \frac{K_0 K_\varphi(s) F(s)}{N}} \left[\theta_i(s) + \Delta \theta_i(s)\right] \quad (2)$$

Let us assume that:

$$\theta_0^* = \theta_0(s) + \Delta \theta_{0i}(s) \tag{3}$$

In equation (3) $\Delta \theta_{0i}(s)$ is the portion reference noise, which appears at the system output.

The transfer function from the reference phase noise disturbance to the out of loop is given by:

$$\frac{\Delta\theta_{0i}(s)}{\Delta\theta_{i}(s)} = \frac{K_{0}K_{\varphi}(s)F(s)}{s + \frac{K_{0}K_{\varphi}(s)F(s)}{N}}$$
(4)

If the phase detector is a three-states phase-frequency detector, we have:

$$K_{\varphi}(s) = K_{\varphi} \tag{5}$$

The typical loop filter uses the form:

$$F(s) = \frac{1 + s\tau_1}{s\tau_2} \tag{6}$$

In this case, expression (4) becomes:

$$\frac{\Delta\theta_{0i}(s)}{\Delta\theta_{i}(s)} = N \frac{2\xi\omega_{n}s + \omega_{n}^{2}}{s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2}} (7)$$

where:

$$\omega_n = \sqrt{\frac{K_0 K_{\varphi}}{N \tau_2}} \tag{8}$$

is the natural frequency for the control loop, and:

$$\xi = \frac{1}{2}\omega_n \tau_1 \tag{9}$$

is the damping factor.

Classical Laplace transform techniques may be used for continuous system. Sampleddata phase locked loops have played a significant role in frequency synthesis ever since digital elements (dividers, phase detectors) began supplementing the analog design process. In this context, we can use a technique for converting a rational Laplace transform into a representative z transform. The method is based on approximating s⁻¹ as:

$$s^{-1} = \frac{T}{2} \frac{z+1}{z-1} \tag{10}$$

It is interesting to determine the output phase error $\Delta \theta_{0i}(z)$.

We obtain the equation for error:

$$\frac{\Delta\theta_{0i}(z)}{\Delta\theta_{i}(z)} = \frac{K_{1}z^{2} + K_{2}z + K_{3}}{K_{0}z^{2} + M_{1}z + M_{2}}$$
(11)

where:

$$\begin{cases}
K_{0} = 1 + \xi \omega_{n} T + \left(\omega_{n} \frac{T}{2}\right)^{2} \\
K_{1} = \left[\xi \omega_{n} T + \left(\omega_{n} \frac{T}{2}\right)^{2}\right] \cdot N \\
K_{2} = \frac{(\omega_{n} T)^{2}}{2} \cdot N \\
K_{3} = \left[-\xi \omega_{n} T + \left(\omega_{n} \frac{T}{2}\right)^{2}\right] \cdot N
\end{cases}$$
(12)

and:

$$M_{1} = -2 + \frac{(\omega_{n}T)^{2}}{2}$$

$$M_{2} = 1 - \xi \omega_{n}T + \left(\omega_{n}\frac{T}{2}\right)^{2}$$
(13)

Recognizing z^{-1} as the simple unit delay operator may rewritten in the time domain as the recursion:

$$\Delta \theta_{0i}(n) = \frac{1}{K_0} \Big[K_1 \Delta \theta_i(n) + K_2 \Delta \theta_i(n-1) + K_3 \Delta \theta_i(n-2) \Big] - \frac{1}{K_0} \Big[M_1 \Delta \theta_{0i}(n-1) + M_2 \Delta \theta_{0i}(n-2) \Big]$$
(14)

The dynamic behavior of the system can be analyzed by using the Simulink package. In figure 2 is shown the model for our case.

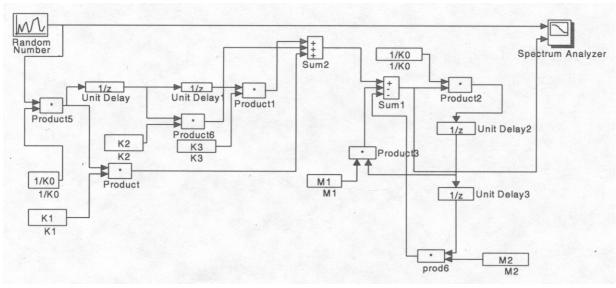
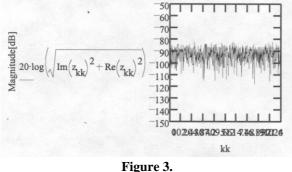


Figure 2.

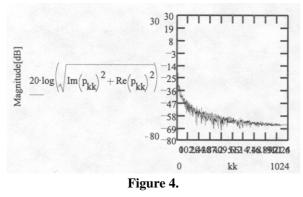
II. Numerical results

Equation (14) may be used to calculate the phase error response. Figure 3 describes the spectrum of input signal.



rigure 5.

The results of the output spectrum are shown graphicaly in cases: figure 4 for N=1000; $\xi = 0.7$; $\omega_n T = 0.01$ and figure 5 for N = 1000; $\xi = 0.7$; $\omega_n T = 0.001$.



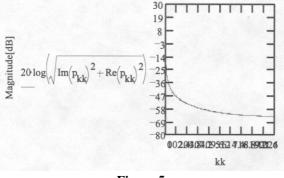
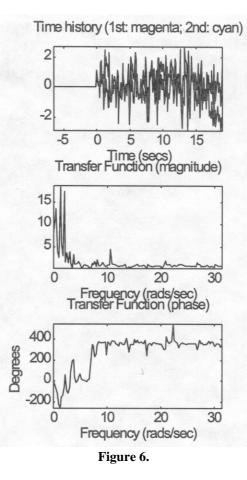


Figure 5.

Results of simulating system's behavior for the case N = 1000; $\xi = 0.7$; $\omega_n T = 0.001$ are presented in figure 6.

The system behaves as a low-pass filter with respect the phase noise of the reference signal. The components of reference noise with rates below natural frequency ω_n appear



at the output whereas components with rates above ω_n are attenuated by the loop.

We can conclude that the output noise power is the reference noise power multiplied by N2.

III. References

- 1. Crawfard, James A., Frequency Synthesizer Design Handbook, Artech House, Boston-London, 1994.
- 2. Manassewitch, Vadim, Frequency Synthesizers Theory and Design, Wiley, New-York, 1989.
- 3. Rohde, Ulrich, Microwave and wireless synthesizers, Wiley, New- York, 1997.
- Bechet, Paul, Analiza sintetizoarelor de frecvență în aplicații, Referat doctorat, Universitatea Tehnică, Cluj-Napoca, 1999.