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Comparison between Three 

Metaheuristics Applied to Robust Power 

System Stabilizer Design 
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Abstract - This paper presents a PSS (Power System Stabilizer) design using Particle Swarm Optimization (PSO), Genetic 

Algorithms (GA) and Simulated Annealing (SA) methods. The design is considered for multimachine power systems. The main 

motivation for this design is to damp electromechanical oscillations and stabilize low-frequency oscillations of power systems. The 

lead-lag PSS parameters are tuned by formulating an optimization problem which is solved by these three meta-heuristic 

techniques, to reach optimal global stability. 

This approach has been applied to the WSCC (Western System Coordinating Council), which is a three-machine nine-bus system 

has, to design optimal PSSs for different operating conditions and disturbances and different loads. A comparison between the 

three techniques, in terms of performance and calculation time consumption, is carried out through simulation results. 

Keywords: Lead-lag PSS, Dynamic Stability, Genetic Algorithms, Particle Swarm Optimization, Simulated Annealing, 

Multimachine Power Systems. 

 

1. INTRODUCTION

 

Stability of power systems has mainly depended 

on the stability of their generators. Automatic Voltage 

Regulator (AVR) has been introduced to stabilize the 

voltage, consequently this choice affect the dynamic 

stability of the power system. A device which is placed 

in excitation system  (Power System Stabilizer: PSS) is 

used to generate supplementary control signals for the 

excitation system in order to damp the low frequency 

local and intra-area oscillations for 0.1 to 3 Hz [1] [2] 

[3]. 

The parameters of the CPSS (Conventional Power 

System Stabilizer) are determined based on a linearized 

model of the power system around a nominal operating 

point where they can provide good performance [3]. 

Because power systems are highly nonlinear systems, 

with configurations and parameters that change with 

time, the CPSS design based on the linearized model of 

the power systems cannot guarantee its performance in 

a practical operating environment [1]. To improve the 

performance of the CPSS, numerous techniques have 

been proposed for their design [1] [3] [4] such as using 

intelligent optimization methods. 

Meta-heuristic techniques are a new family of 

stochastic algorithms which aim to solve difficult 

optimization problems. Used to solve various 

applicative problems, these methods have the advantage 

to be generally efficient on a large amount of 

problems.GA and PSO belonged to population 

approaches but SA algorithms belong to trajectory 

approaches. 
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Meta-heuristics are generally used to solve a 

simplified OPF (Optimal Power Flow) problem such as 

the classic economic dispatch, security - constrained 

economic power dispatch, and reactive optimization 

problem, as well as optimal reconfiguration of an 

electric distribution network [5]. 

Genetic algorithms (GAs) were invented by John 

Holland in the 1960s and were developed by Holland 

and his students and colleagues at the University of 

Michigan in the 1960s and the 1970s. In contrast with 

evolution strategies and evolutionary programming, 

Holland's original goal was not to design algorithms to 

solve specific problems, but rather to formally study the 

phenomenon of adaptation as it occurs in nature and to 

develop ways in which the mechanisms of natural 

adaptation might be imported into computer systems [6] 

[7]. 

The Particle Swarm Optimization (PSO) strategy 

is a new class of algorithms proposed to solve 

continuous optimization problems [8] [9] [10]. 

The Particle Swarm Optimizer was introduced by 

James Kennedy and Russell Eberhart in 1995. Inspired 

by social behavior and movement dynamics of insects, 

birds and fish, it is also related, however, to 

evolutionary computation, and has links to both genetic 

algorithms and evolution strategies.  

The origin of the SA algorithm is in statistical 

mechanics. Kirkpatrick et al. originated the idea of 

using the annealing method in optimization problems 

[11]. Annealing is the metallurgical process of heating 

up a solid and then cooling slowly until it crystallizes. 

Atoms of this material have high energies at very high 

temperatures. This gives the atoms a great deal of 
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freedom in their ability to restructure themselves. As 

the temperature is reduced the energy of these atoms 

decreases, until a state of minimum energy is achieved. 

In an optimization context SA seeks to emulate this 

process [12]. Generic probabilistic meta-heuristic for 

the global optimization problem of applied 

mathematics, namely locating a good approximation to 

the global optimum of a given function in a large search 

space. The core of the SA is laid in a way allowing 

escaping from local optima in order to find the 

possibility best global solution; even if the new created 

solution aggravates the fitness solution [13]. 

The problem of PSS design is as an optimization 

problem with constraints. Then, GA, PSO and SA 

algorithms can be employed to solve this optimization 

problem. Simulation results have been carried out to 

compare and assess the effectiveness of these methods 

under different disturbances and loading conditions [8] 

[9] [10]. 

2. POWER SYSTEM MODELING 

2.1. Power system model 

The complex nonlinear model related to an n–

machine interconnected power system [14] [15], can be 

described by a set of differential-algebraic equations.  

For a given operating condition, the multimachine 

power system model is linearized around the operating 

point. 

The closed loop eigenvalues of the system are 

then computed and the desired objective functions are 

formulated using only the unstable or lightly damped 

electromechanical eigenvalues, keeping the constraints 

of all the system modes stable under any condition [1] 

[3]. For a multi-machine power system of n generators 

the state space model can be written as follows [16] 

[17] [18]: 

  (1) 

Where,   are the state variables, the 

control and the disturbance vectors respectively, with: 

  (2) 

  (3) 

  (4) 

For a single machine system n=1 these equations 

can be written as: 

  (5) 

Where: 

  (6) 

  (7) 

  (8) 

The control vector U(t) is a vector of stabilizing 

signals that represents the PSS output at different 

machines. The dynamic equations of the PSS in state-

space form, as obtained from the transfer function 

block-diagram, are given below [19]: 

  

  (9) 

  

Where  and  are the state-variables associated 

with each PSS,  is the washout time constant, 

 are the phase-lead time constants and  is 

the stabilizer gain. 

2.2. PSS structure 

In the design of PSS, The linearized incremental 

models around an equilibrium point are usually 

employed. 

The operating function of a PSS is to produce a 

proper torque on the rotor of the machine involved in 

such a way that the phase lag between the exciter input 

and the machine electrical torque is compensated. A 

widely speed based used conventional PSS is 

considered throughout the study. 

The transfer function of the lead-lag PSS is given 

by[18] [20]: 

  (10) 

 is a filter constant used to block unwanted 

frequencies below 0.1 Hz. This value is not really 

critical; it is generally taken between 1 s and 20 s. In 

this study it is set to 10 s. 
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Figure 1. A linear model of a multi-machine power system. 
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Kc is the gain that will mitigate the oscillations of 

the rotor system. Since the aim of the lag blocks is to 

establish a sufficient phase lag to damp the system low 

frequency oscillations, one can take

. Finally, equation) becomes: 

  (11) 

So the final block-diagram of this kind of lead-lag 

PSS is as follows [19] [20]: 

2.3. Objective Function 

Normally, the PSS stabilizes the system regardless 

of its operating point. The parameters of the PSS will 

be tuned, for each operating point considering a linear 

model of the electrical system. 

This is formulated as a multivariable and 

nonlinear optimization problem in order to maximize a 

constrained cost function. 

First of all, one may classify the damping factors 

of the k
th 

operating point in the vector .The objective 

is tune  the PSSs parameters in limited search space, 

ensuring an acceptable damping for all operating 

points. To do this we must ensure that at the end all the 

damping factors are higher than an acceptable value.  
Then, the optimization problem to be solved by the 

AG, PSO or SA algorithms can be written in the following 

from: 

Maximize: 

  (12) 

Subject to the following constraints: 

  

  

  

Where: 

 m is the total number of the operating points; 

 j   is the PSS index 

The problem thus defined is a complex 

optimization problem because the objective function 

depends on the eigenvalues of a large matrix. It is 

difficult to solve it using conventional methods [21]. 

The damping coefficients  are calculated from 

the eigenvalues as: 

  (12) 

   (13) 

Where “i “  is the index of the mode. 

In this work different meta-heuristic methods are 

used to solve this optimization problem and search for 

an optimal set of PSS parameters, Kc,T1 and T2. 

3. ALGORITHMS  

 

3.1. Genetic Algorithm  

Genetic Algorithms are global search techniques 

providing a powerful tool for optimization problems by 

miming the mechanisms of natural selection and 

genetics [19]. 

The sequential steps for searching the optimal 

solution of PSS parameters using GA are shown in the 

following steps: 

 

1. Set parameters of GA: 

 Number of bits on which we can encode a 

parameter 

 Number of parameters to optimize for each 

PSS (Kc,T1, T2) 

 Number of PSSs 

 Number of possible combinations (for the 

choice of the initial population) 

 Number of individuals (must be multiple of 

the combinations number) 

 Probability of crossover 

 Number of crossing points 

 Mutation probability 

2. Choose the number of generations  

 Number of generations “MaxGen” 

3. Initialize the population, encoding and decoding 

4. Repeat the following, WHILE the generation 

number is below “MaxGen”: 

 Evaluation of individuals (fitness function) 

 Selection (by class) 

 Crossing 

 Mutation 

5. Output optimal solution. 

3.2. PSO Algorithm  

The particle swarm optimization is based on a set 

of individuals originally randomly arranged and 

homogeneous. Therefore we call it particles, which 

move in the hyperspace of research and are each a 

potential solution. Each particle has a memory about his 

best seen as the ability to communicate with the 

particles forming around it. From this information, the 

particle will follow a trend made, from one side, 

willingness to return to its optimal solution, and from 

the other side, his mimicry in relation to the solutions 

found in its vicinity. From local optima and empirical, 

all particles will normally converge to the global 

optimum solution of the addressed problem [22]. 
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Figure 2. Block diagram of a lead-lag phase PSS. 
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The process of finding the particles is based on 

two rules: 

1) Each particle has a memory that can store the best 

point by which it has already passed and it tends to 

return to this point; 

2) Each particle is informed of the best known point 

in its neighborhood and it will tend to move 

towards this point. 

Each particle moves according to a compromise 

between the 3 following trends: 

 Repeat its previous motion; 

 Move towards its best previous position; 

 Move towards the best position (past) of its group 

of informants. 

Each agent tries to modify its position based on 

the following information [23]: 

 Current positions (x, y) 

 Current velocities (vx, vy) 

 Distance between the current position and pbest, 

 Distance between the current position and gbest. 

Thus, the velocity of the particle i is updated using 

the following equation (18): 

 
  (14) 

Where w is the inertia weight, c1 and c2 are the 

acceleration constants (c1 + c2≤4, [24]), rand1 and rand2 

are random numbers in the interval [0 1]. 

Then the position of the particle  is modified 

from the current position and a new speed is calculated 

 

  (15) 

The weight is given by the following equation: 

  (16) 

w= [0.4 - 0.9] during the search procedure gives better 

results [23]. 

The right choice of parameters will allow the rapid 

convergence and minimizes the computation time, 

details of choice is quoted, in [25]: 

The first rule stipulates that c1 must have an 

absolute value less than 1in practice, this coefficient 

should be neither too small on PSO recommended that 

it be equalized to 0.7 or 0.8.  

The parameter c2 should not be too large, a value 

of about 1.5 to 1.7 being regarded as effective in the 

majority of cases. The pairs of values (0.7 1.47) and 

(0.8 1.62) are indeed correct. The following figure 

shows the general flowchart of PSO. 

The steps involved in the optimization algorithmic 

of the particle swarm are as follows [22] [23] [26]: 

Step1: Select several parameters of PSO; 

Step2: Initialize a population of particles with random 

positions and velocities in the problem search 

space; 

Step3: Evaluate the ability of optimization for a desired 

personal touch to each particle; 

Step4: For each individual particle, compare the value 

of the particle with its ability pbest. If the 

current value is better than the evaluated pbest, 

then set this as pbest for the agent i; 

Step5: Identify the particle that has the best value of its 

fitness function which will be identified as 

gbest; 

Step6: Calculate the new speed and position of particles 

using equations 15 and 16. 

Step7: Repeat steps 3-6 until the stopping criterion is 

met. 

3.3. SA Algorithm 

Simulated annealing is an optimization method for 

analog simulation of a process encountered in 

metallurgy, annealing of metals. Annealing is a 

physical process of heating. Thus, when heating a solid 

metal, it becomes liquid at a certain temperature, in 

which case the atoms that compose saw their degree of 

freedom increases, conversely when the temperature is 

lowered the degree of freedom decreases to a solid lead. 

In a SA algorithm, it is attempted to avoid 

becoming trapped in a local optimum by sometimes 

accepting a neighborhood move which increases the 

value of the fitness function [13] [27] . 

Now, depending on how the temperature is 

reduced, one may get different solid: 

1. A sudden drop in temperature (tempering), 

produces an amorphous structure, a glass, and then 

we have a local minimum of energy; 

2. A gradual decline in temperature will permit to 

reach the global minimum of energy. One may 

obtain in this case a crystal (best thermodynamic 

equilibrium). 

The state of a material depends on the 

temperature, at which it is worn. One can achieve a 

balance heat at each temperature. This requires a large 

1 :k

iv 

Figure 3. General flowchart of the PSO algorithm. 
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number of transitions that must occur at each 

temperature. This thermal equilibrium is characterized 

by the Boltzmann distribution. The probability P (x) to 

visit a state X in terms of its energy E(x) and 

temperature T, is given by the following relationship 

(15): 

  (17) 

Where K is the Boltzmann constant (1.3806503 × 10-

23 m2.kg.s-2.K-1) and N(T) is the partition function. 

The analogy between a physical annealing process 

and a combinatorial optimization problem is based on 

the following: 

 The solutions obtained for the optimization 

problem are equivalent to configurations of a 

physical system; 

 The cost of a solution is equivalent to the energy of 

a configuration. 

The basic algorithm of the method of simulated 

annealing is described as follows: 

1. Initialization: 

 Choose an initial solution 

 Choose an initial temperature 

2. As long as no stop criterion is satisfied do: 

 Generate a random neighborhood 

 Choose a neighborhood 

 Select the neighboring competitor 

 Update the current configuration 

 Update the temperature 

3. End if stop criterion is satisfied. 

4. SIMULATION RESULTS 

In this part of the study, a three-machine nine-bus 

power system of Figure 4 (which shows the single line 

diagram of the network WSCC (Western System 

Coordinating Council) three machine nine-bus system 

[19]) is considered. It operates at different loading 

conditions. Details of the system data and operating 

conditions are given in [18] [19] [28] and depicted in 

Tables 1 and 2. 
Three operating points are considered to cover a 

wide range of load variation: 

Table 1.Operating points of the WSCC 

 

Operating conditions (in per unit) 

Light Nominal Heavy 

P Q P Q P Q 

G1 0.362 0.162 0.716 0.271 2.207 1.088 

G2 0.800 -0.109 1.630 0.067 1.920 0.564 

G3 0.450 -0.204 0.850 -0.107 1.280 0.359 

 
Table 2.Loading conditions 

load 

Loading conditions (in per unit) 

Light Nominal Heavy 

P Q P Q P Q 

A 0.65 0.55 1.25 0.50 2.00 0.80 

B 0.45 0.35 0.90 0.30 1.80 0.60 

C 0.50 0.25 1.00 0.35 1.50 0.60 

 

A linear system is obtained after linearization. 

Then, the study of the system eigenvalues for the 

nominal operating point is carried out. Figure 5 shows 

that the system is stable but very poorly damped. 

To verify this in the time domain, the dynamic 

response of the system (see Figure 6) is carried out for 

the three mentioned cases of operating conditions. The 

following scenario has been considered: 

 A three-phase short circuit near the highest power 

generator (node 7) is created at t = 1 second; 

 The line (7-5) is opened at t = 1.09 seconds; 

 Then this line is closed at t = 1.1 seconds. 

The simulation time is about 10 seconds. 

We find that, indeed, the system is poorly damped 

because it takes a long time to return to its stable state. 

Elsewhere, the method of participation factors was 

applied and the results are shown in the Table 3.These 

results indicate that it will be interesting if the 

generators 2 and 3 are equipped with PSSs. 

Figure 4. Three-machine nine-bus system. Figure 5. Eigenvalues of electromechanical modes without PSSs. 
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Table 3. Participation factors of the system generators 

Load Mode G1 G2 G3 

Light 
-0.4009 ±9.7572i 

-0.3346 ±7.5394i 

0.0138 

0.2269 

0.1318 

0.6819 

0.8349 

0.0694 

Nominal 
-0.4063±11.7451i 

-0.3080±08.3057i 

0.0085 

0.2561 

0.1520 

0.6559 

0.8291 

0.0838 

Heavy 
-0.3643 ±11.9296i  

-0.3079 ±8.2038i  

0.0097 

0.2371 

0.1466 

0.6777 

0.8389 

0.0831 

 

Now let us optimize the PSSs parameters of the 

two generators G2 and G3 using the three techniques 

(GA, PSO and SA) and compare the results.  

The PSSs parameters obtained by the use of 

different algorithms are given in (Table 4, Table 5 and 

Table 6). In order to increase the search space, the 

following operating conditions are considered: 

Table 4. Settings of the genetic algorithm 

AG parameters 

Number of bits (binary encoding) 8 

Number of individuals 128 

Probability of crossover 0.9 

Number of crossing points 2 

Mutation probability (0.09, 0.09] 

Iteration Max 50 

Number of combination 64 

 

Table 5. Settings of the PSO algorithm 

PSO parameters 

wmax  : Initial weight 0.9 

wmin:   Final weight 0.75 

c1 0.7 

c2 1.47 

Population size 10 

Iteration Max 10 

 

Table 6. Settings of the SA algorithm 

SA parameters 

Initial temperature 100 

Final temperature 0.001 

Cooling Coefficient 0.8 

Number of iterations 10 

 

Moreover, Table 7 shows the obtained PSSs 

parameters by GA, PSO and SA optimization. 

Table 7. Optimization results by the different techniques 

  GA PSO SA 

PSS1 

KC1 45.8824 35.4298 47.3142 

T11 0.2772 0.1680 0.2101 

T21 0.0277 0.0047 0.0246 

PSS2 

KC2 14.5098 35.4298 49.4164 

T12 0.2618 0.1680 0.2431 

T22 0.0269 0.0047 0.0264 

 % 25,20 17,10 15,90 

 Search space 
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4.1. Dynamic response of the stabilzed system 

To evaluate the effectiveness and compare the 

different techniques applied to optimize the PSSs, a 

dynamic study using is carried out under different load 

conditions and a significant disturbance with the same 

scenario already mentioned. The simulation results for all 

the operating conditions are shown in Figure 7, Figure 8 

and Figure 9. 

The three meta-heuristic techniques can be 

compared, as shown in the Table 8 and Table 9. The 

comparison of these different techniques was made by 

taking into account two criteria, the amplitude of the 

first peak and the attenuation time (see Table 10). We 

can see that the meta-heuristic techniques used to the 

mitigation electromechanical oscillations, by 

optimizing the parameters of PSSs, have proved their 

effectiveness in general. 

Table 8. Comparison between the three techniques (Point of view 

first peak amplitude) 

 Load 

Generator Light Nominal Heavy 

G1 
SA 

0.0017 p.u 
GA 

0.0031 p.u 
GA 

0.0032 p.u 

G2 
GA/PSO 

0.0049 p.u 

GA 

0.0049 p.u 

PSO 

0.0049 p.u 

G3 
SA 

0.0011 p.u 
SA 

0.0051 p.u 
PSO 

0.0054 p.u 

 
Table 9. Comparison between the three techniques (Point of view of 

time attenuation) 

 Load 

Generator Light Nominal Heavy 

G1 
SA 

3.75s 

GA/PSO/SA 

4.84s 

PSO 

4.19s 

G2 
SA 

4.33s 
GA/PSO/SA 

3.26s 
PSO 
3.81s 

G3 
PSO/SA 

4.68s 

GA/PSO/SA 

5.03 

PSO 

3.70s 
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Figure 6. Dynamic response of the system for a Nominal Load 

without PSSs. 
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Figure 7. Speed deviations for light load condition. Figure 8. Speed deviations for nominal 

load condition 

 

Figure 9. Speed deviations for heavy load 
condition 

Table 10. The best technique in both cases 

 Load 

Generator Light Nominal Heavy 

G1 SA GA GA/PSO 

G2 SA GA PSO 

G3 SA SA PSO 

 

To compare accurately the three techniques in 

terms of execution time, the population size 

(characterizing the GA and PSO only) and the number 

of generations that characterizes the three methods, 

have been varied. 

One can see from Figure 10 the difference in 

terms of execution time between GA and PSO when we 

vary the number of generations for different population 

size of 64 and 128 individuals. It is clear that PSO takes 

less time to converge compared to GA. Note that the 

mean calculation time of each technique is the average 

value of several executions for the same generation. 

The results are carried out using a T 6600 (2 duo 

CPU, 2.2 GHz) PC and the Matlab R2010a software. 

To compare SA with GA and PSO in terms of 

execution time, it should be noted that the simulated 

annealing depends on several parameter settings that 

increase considerably the convergence time (such as the 

cooling coefficient, the maximum number of 

temperature and the difference between the initial and 

the final temperature). In this comparison study, the 

same parameters of  

Table 6 have been considered. But the number of 

generations has been varied for two different values of 

the cooling coefficient (0.95 and 0.8). 

From Figure 11, one can note a great difference in 

terms of execution time in favor of the simulated 

annealing for different cooling coefficient values (0.8 

and 0.95 in this case). One can conclude also that the 

PSO technique is more rapid then the GA. 
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Figure 10. Comparison between GA and PSO in terms of mean 
calculation time for two different sizes of population. 
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5. CONCLUSION 

In this study, three techniques has been presented 

and applied to optimal design of PSSs for multimachine 

power systems. In fact, the optimal parameters of the 

PSSs are globally tuned by GA, PSO and SA 

algorithms. Simulation results of the system dynamic 

response for different operating points has shown the 

effectiveness and the robustness of these algorithms in 

terms of damping characteristics and dynamic stability 

of the power system.  

A comparison of the three techniques applied to 

the PSS optimal design leads to the following remarks:  

There is no an absolutely better algorithm in terms 

of PSSs performance, since this depends on several 

parameters. In terms of time convergence, PSO has the 

best score. Elsewhere, SA algorithm is simpler to 

implant. But, the genetic algorithm usually gives the 

best result in terms of the objective function value, 

since its convergence is sure but asymptotic. It was 

found also that the results of these algorithms are more 

or less good in terms of the first peak limitation and the 

time of rotor oscillation damping. It depends on the 

system operating point and the PSS placement. The 

major drawback of meta-heuristic techniques is that 

their settings are adapted empirically to the problem for 

each operating point, and the power system changes its 

configuration continuously. 
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Figure 11. Comparison of three techniques (SA, GA and PSO) in 
terms of execution mean time. 
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