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Abstract: This paper presents a comparative analysis study of an efficient and reliable quadratic programming (QP) and general 

algebraic modeling system (GAMS) to solve dynamic economic load dispatch (DELD) problem with and without considering 

transmission losses in a power system. The proposed QP method takes care of different unit and system constraints to find optimal 

solution. To validate the effectiveness of the proposed QP and GAMS solution, simulations have been performed using four 

different cases, a 18-unit, 20-unit with losses, 40-unit and a very large system consisting of 110-unit. Results obtained with the QP 

method and GAMS have been compared with other existing relevant approaches available in literatures. Experimental results show 

a proficiency of the QP method over other existing techniques in terms of robustness and its optimal search behavior comparing to 

GAMS.  
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1. INTRODUCTION

 

Economic load dispatch (ELD) problem concern 

the determination of the optimal combination of power 

output for all generating units which will minimize the 

total fuel cost while satisfying load and operational 

constraints in power system. ELD is a complex problem 

to solve because of its massive dimension, a non-linear 

objective function and large number of constraints. 

Various investigations on the ELD have been 

undertaken till date. Suitable improvements in the unit 

output scheduling can contribute to significant cost 

savings. To improve the quality of solution, lots of 

researches have been done and various methods have 

been evolved so far in the field of ELD [1], [2]. 

Classical optimization techniques, such as the lambda 

iteration approach, the gradient method, the linear 

programming method and Newton’s method were used 

to solve the ELD problem [3]. Lambda iteration method 

is the most common, which has been applied to solve 

ELD problems. But for effective implementation of this 

method, the formulation must be continuous. Though 

fast and reliable, the main drawback of the linear 

programming methods is that they are associated with 

the piecewise linear cost approximation [4]. 

Artificial Neural Network (ANN) techniques such 

as Hopfield Neural Network (HNN) [4] have been used 

to solve ELD for units having continuous or piecewise 

quadratic fuel cost functions and for units having 

prohibited zone constraints. Hopfield energy function 

and numerical iterations are applied to minimize the 

energy function which is mapped to the objective 

function of the ELD problem. In the conventional 
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Hopfield Neural Network, the input-output relationship 

for its neurons is described by sigmoid function. Due to 

the use of the sigmoid function, the Hopfield model 

suffers from large computational time and curve 

saturation. To avoid such problem problems, a linear 

model is also used [5].  

Evolutionary programming (EP), genetic 

algorithm (GA), differential evolution (DE), particle 

swarm optimization (PSO) [6], [7] have been also 

proved to be effective with promising performance etc. 

Improved fast evolutionary programming algorithm has 

been successfully applied for solving the ELD problem 

[1], [5]. Biogeography-Based optimization (BBO) [8], 

Chaotic particle swarm optimization (CPSO) [9], new 

particle swarm with local random search (NPSO-LRS) 

[10], Self-Organizing Hierarchical PSO [11], Bacterial 

foraging optimization [12], improved coordination 

aggregated based PSO [13], quantum-inspired PSO 

[14], improved PSO [15], HHS algorithm [16] and 

HIGA [17] have been successfully applied to solve the 

ELD problem. 

A comparative analysis study of Quadratic 

programming (QP) and General Algebraic Modeling 

System (GAMS) approach is proposed to solve ELD 

problems. QP is an effective tool to find global minima 

for optimization problem having quadratic objective 

function with linear constraints. The objective function 

for the 4 test system used in the simulation is quadratic 

but the constraints are not linear. Constraints are 

liberalized by transformation of variable technique and 

the QP is applied recursively till the convergence is 

achieved. GAMS is a high-level model development 

environment that supports the analysis and solution of 

mixed integer optimization linear, and non linear 

problems. GAMS is an accurate tool which can be 



Volume 54, Number 2, 2013 

 

127 

useful easily for large and complex optimization 

problem.  

2. ELD PROBLEM FORMULATION 

In a power system, the unit commitment problem 

has various sub-problems varying from linear 

programming problems to complex non-linear 

problems. The concerned ELD problem is one of the 

different non-linear programming sub-problems of unit 

commitment. The ELD problem is about minimizing 

the fuel cost of generating units for a specific period of 

operation so as to accomplish optimal generation 

dispatch among operating units and in return satisfying 

the system load demand considering power system 

operational constraints. 

The objective function corresponding to the 

production cost can be approximated to be a quadratic 

function of the active power outputs from the 

generating units. Symbolically, it is represented as 

 
1

min ( ) ( )
N

T G i Gi
i

F P F P


   (1) 

Where the expression for cost function corresponding 

to i-th generating unit is given by: 

 2( )i Gi i Gi i Gi iF P a P b P c    (2) 

where ai, bi and ci are the cost coefficients; PGi is the 

real power output (MW) of i-th generator 

corresponding to time period t and N is the number of 

online generating units to be dispatched. 

The objective function is subject to the following 

constraints: 

1) Power Balance Constraints: 

The total system generation must be equal to the 

sum total system loads (PD) and losses (PL). That is,  
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The transmission losses can be expressed using 

the B-coefficients loss formula  
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where the parameters Bi,,j, Bi,0, and B0,0 are B-

coefficients known for a specific power system. 

By applying Lagrangian multipliers method and 

Kuhn tucker conditions the following conditions for 

optimality can be obtained. 
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2) The Generator Constraints: 

The power generated by each generator should be 

within its lower limit and upper limit so that 

 
min max
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3) Ramp Rate Constraints: 

For convenience in solving the DELD problem, 

the unit output is usually assumed to be adjusted 

smoothly and instantaneously. Practically, the operating 

range of a unit i is restricted by their ramp rate limits 

(the up-ramp limit Riup and the down-ramp limit 

Ridown) [5]. Hence, this constraint must be taken into 

account to achieve true economic operation. The 

inequality constraints due to ramp rate limits for unit 

generation changes (∆Pi) between interval t and t+1 of 

the total periods of operation T are given as follow: 
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3. ECONOMIC DISPATCH PROBLEM 

SOLUTION BY COMPACT QUADRATIC 

PROGRAMMING 

QP is an effective optimization method to find the 

global solution if the objective function is quadratic and 

the constraints are linear. It can be applied to 

optimization problems having non-quadratic objective 

and nonlinear constraints by approximating the 

objective to quadratic function and the constraints as 

linear.  

QP is the mathematical problem of finding a 

vector x that minimizes a quadratic function (23): 

 
1

min( x x 'x)
2

T

x
H f  (8) 

Subject to the linear inequality and equality (9) 

and bound constraints (10): 
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Ax b

A x b

 


 
 (9) 

 xlb ub   (10) 

We use the flowing Matlab code formulated as:   
x=quadprog (H, f, A, b, Aeq, beq, lb, ub) 

% solves the quadratic programming problem: 

min 0.5*x'*H*x + f'*x  

% while satisfying the constraints 

A*x ≤ b  

Aeq*x = beq 

lb <= x <= ub 

 

To map the ED to QP, the objective function 

variables are given by the power generation output 

vector (11), the penalized N×N matrix H (12) and the 

N×1 vector f (13) as follow: 
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To satisfy the equality constraint Aeq* x = beq, 

we set 

   (1 )D Lbeq P z P    (14) 

where PD is a power demand and PL is losses 

calculated by (4)  and z  is a controlling parameters. 
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The limits of power generated are imposed in the 

formulation of QP as follows: 

 min min min
1 2[ , ,..., ]G G GNlb P P P  (16) 

 max max max
1 2[ , ,..., ]G G GNub P P P  (17) 

To map the ED to CQP in Matlab, we propose the 

following Matlab code: 
P=l 

for i=1:10 

Pl=P'*B*P+B01*P+B00; 

Aeq =ones(1,n)+z*(P'*B+B01+B00/P); 

beq=Pd+(1+z)*Pl; 

ll=diag(1-2*B*P-B01'); 

A1=inv(ll)*a; 

f=inv(ll)*b; 

H=2*diag(A1);                        

P=quadprog(H,f,[],[],Aeq,beq,l,u);  

pln=P'*B*P+B01*P+B00; 

acu=(Pd+pln)-sum(P); 

end                                      

 

The ELD is solved by the following steps. 

Step 1: Initialize the procedure, allocate lower limit of 

each unit, and evaluate the transmission loss PL old. 

Step 2: Calculate H, f, beq, Aeq, lb, ub using (12)-(17) 

respectively.  

Step 3: Determine the power allocation of each plant by 

substitute the quantities of step 2 in the quadratic 

programming solver to determine the corresponding 

optimal power generations PGi , i = 1,..,N. 

Step 4: Calculate the new value of transmission losses 

PLnew using (4) by substituting the power 

generation determined in step 3. 

Step 5: Check for convergence   

 
1

N
new

D L Gi
i

P P P 


    (18) 

where ε is the tolerance value, for power balance 

violation. 

Step 6: Carry out the steps 2-5 till convergence is 

achieved. 

 

 

 

4. GENERAL ALGEBRAIC MODELING 

SYSTEM (GAMS) 

GAMS is a high-level model specially designed 

for modeling linear, nonlinear and mixed integer 

optimization problems. GAMS can easily handle large 

and complex problems. It is especially useful for 

handling large complex problems, which may require 

much revision to establish an accurate model. Models 

can be developed, solved and documented 

simultaneously, maintaining the same GAMS model 

file. The basic structure of a mathematical model coded 

in GAMS has the components: sets, data, variable, 

equation, model and output [18] and the solution 

procedures are shown below 

GAMS formulation follows the basic format as 

given below: 

 Sets: Declaration, Assignment of members; 

 Data (parameters, tables, scalars), Declaration, 

Assignment of values; 

 Variables: Declaration, Assignment of type, 

Assignment of bounds and/or initial values 

(optional); 

 Equations: Declaration, Definition; 

 Model and solve statements; 

 Display statements (optional) 

5. RESULT AND DISCUSSION 

The QP and GAMS have been applied on 4 

different standard power systems. Test case I is a 18-

unit, Test case II is a 20-unit system with losses, Test 

case III is a 40-unit and Test case IV is a large scale 

system consisting of 110-unit. The programs were 

written in MATLAB 7.8 for QP and implementation on 

GAMS with a Pentium 4 processor and 1GB RAM. 

5.1. 18-Unit test system 

A 18-unit test system having quadratic cost 

function: The parameters of all thermal units are taken 

from [19], and given in Table I. The maximum power 

demand of the system set at PD = 433.22 MW. The 

results are compared with λ-iteration and Binary GA 

[19], RGA [19] and ABC [20] for this system. The 

summarized and comparative results of test case 1 for 

Optimization Model Formulation in GAMS 

Global and Local search method for nonlinear 

optimization 

Optional calls for other solvers and external 

Programs 

GAMS solution 

report 

Model description, 

preprocessing, solver 

Fig. 1. GAMS modeling and solution procedure. 
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different demands (95%, 90%, 80% and 70%) without 

losses and ramp rate limit constraint for the QP and 

GAMS algorithm are listed in Table II. From Table II, 

we can show that QP and GAMS both provides 

superior result then earlier reported results; but GAMS 

provides much better result than QP. The summarized 

and comparative DELD results of case 1 showing the 

effect of  ramp rate limit constraint are given in (1) 

Table III (between QP and GAMS ) (2) Table IV 

(GAMS with and without ramp rate limit constraint) 

and (3) Table V showing the comparison results using 

QP with and without ramp rate limit constraint. The 

percent changes in results are also given in Table III, 

Table IV and Table V. 

5.2. 20-Unit test system 

The system consists of 20-unit having quadratic 

cost function taking into account transmission losses. 

Power demand is set at 2500 MW. The parameters of 

all thermal units and loss coefficient are taken from 

[21]. The results are compared with λ-iteration and 

Hopfield Model [21] and BBO [8] methods for this 

system. The results obtained by QP approach and 

GAMS are listed in Table II. It can be clearly seen from 

Table II the proposed GAMS provides better results as 

compared to other reported evolutionary algorithm 

techniques like λ-iteration, Hopfield Model, BBO and 

SA. 

5.3. 40-Unit test system 

A 40-unit with quadratic cost functions where the 

input data of the entire system are given in [23]. A load 

demands of 9000 MW and 10500 MW without 

transmission losses are considered. The results are 

compared with VSDE [23] and SA [22] methods for 

this system. The results obtained by QP approach and 

GAMS are listed in Table III. 

5.4. 110-Unit test system 

A large scale system consisting of 110-units 

system is employed. In this example the fuel cost is 

modeled by quadratic functions without losses .The 

input data of the entire system is taken from [24]. To 

investigate the robustness of the large system, here 

there are three different demand level of 10000 MW, 

15000 MW and 20000 MW are considered. The results 

are compared with Analytical approach [25], SA [26], 

SAB [26], SAF [26] and RQEF [27] methods for this 

system. The results obtained by QP approach and 

GAMS and the comparative are listed in Table IV. 

Results of Table IV show that QP and GAMS both 

provides better results as compared to other reported 

evolutionary algorithm techniques like Analytical 

approach, SA, SAB, SAF and RQEA, but GAMS 

provides much better result than QP. 

 

Table 1. The 18 Unit Test System Characteristics 

 

Table 2. Comparision of Economic Load Dispatch Result of 18-Unit System Without ramp rate limit constraint 

Demand 
λ-iteration 

($/hr)[19] 

Binary GA 

($/hr) [19] 

Real coded GA 

($/hr) [19] 

ABC ($/hr) 

[20] 
QP ($/hr) GAMS ($/hr) 

411.559 29731.05 29733.42 29731.05 29730.8 29731.067 29731.067      

389.898 27652.47 27681.05 27655.53 27653.3 27653.750 27653.750      

346.576 23861.58 23980.24 23861.58 23859.4 23855.286 23855.286      

303.254 20393.43 20444.68 20396.39 20391.6 20386.216 20386.216      

 

Table3. Comparison of DELD result of 18-Unit system with ramp rate limit constraint using QP and GAMS 

 

Table 4. Comparison of DELD result of 18-Unit system using GAMS with and without ramp rate limit constraint 

Time 

interval 

 

D 

GAMS with ramp rate limit GAMS  without ramp rate limit Percent change (%) 

Total cost Losses System λ Total cost Losses System λ Total cost Losses System λ 

1 411.559   29731.067      0.000 100.535       29731.066 0.000 100.535 0.000000 0.0000 0.0000 

2 389.898    27654.110      0.000 92.245       27653.750      0.000 92.463       0.001302 0.0000 -0.2363 

3 346.576   23856.274      0.000 83.817       23855.286      0.000 83.947       0.004141 0.0000 -0.1551 

4 303.254   20389.390      0.000 75.770       20386.216      0.000 76.267       0.015567 0.0000 -0.6559 

Time 

interval 

 

D 

GAMS QP    Percent change (%) 

Total cost Losses System λ Total cost Losses System λ Total cost Losses System λ 

1 411.559   29731.067      0.000 100.535       29731.066 0.000 100.535 0,000003 0,0000 0,0000 

2 389.898    27654.110      0.000 92.245       27654.098 0.000 92.244 0,000043 0,0000 0,0011 

3 346.576   23856.274      0.000 83.817       23856.301 0.000 83.828 -0,000113 0,0000 -0,0131 

4 303.254   20389.390      0.000 75.770       20389.449 0.000 75.769 -0,000289 0,0000 0,0013 

No Pi
min Pi

max ai bi ci 
Rdown 

(MW) 

Rup 

(MW) 

1 7 15.00 0.602842 22.45526 85.74158 10 10 

2 7 45.00 0.602842 22.45526 85.74158 10 10 

3 13 25.00 0.214263 22.52789 108.98370 10 10 

4 16 25.00 0.077837 26.75263 49.06263 10 10 

5 16 25.00 0.077837 26.75263 49.06263 10 10 

6 3 14.75 0.734763 80.39345 677.73000 5 5 

7 3 14.75 0.734763 80.39345 677.73000 10 10 

8 3 12.28 0.514474 13.19474 44.390000 10 10 

 

9 3 12.28 0.514474 13.19474 44.390000 10 10 

10 3 12.28 0.514474 13.19474 44.390000 10 10 

11 3 12.28 0.514474 13.19474 44.390000 10 10 

12 3 24.00 0.657079 56.70947 574.96030 10 10 

13 3 16.20 1.236474 84.67579 820.37760 10 10 

14 3 36.20 0.394571 59.59026 603.02370 7 7 

15 3 45.00 0.420789 56.70947 567.93630 10 10 

16 3 37.00 0.420789 55.96500 567.93630 10 10 

17 3 45.00 0.420789 55.96500 567.93630 10 10 

18 3 16.20 1.236474 84.67579 820.37760 3 3 
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Table 5. Comparison of DELD Result of 18-Unit System Using QP with and without ramp rate limit constraint 

Time 

interval 

 

D 

QP   with ramp rate limit QP   without ramp rate limit Percent change (%) 

Total cost Losses System λ Total cost Losses System λ Total cost Losses System λ 

1 411.559   29731.066 0.000 100.535 29731.066 0.000 100.535 0,000000 0,0000 0,0000 

2 389.898    27654.098 0.000 92.244 27653.750 0.000 92.463 0,001258 0,0000 -0,2374 

3 346.576   23856.301 0.000 83.828 23855.286 0.000 83.947 0,004255 0,0000 -0,1420 

4 303.254   20389.449 0.000 75.769 20386.215 0.000 76.267 0,015861 0,0000 -0,6573 

 
Table 6. Comparison of Result of 20-Unit System (Pd=2500 Mw) 

 λ-iteration 
($/hr)[21] 

Hopfield 
Model[21] 

BBO[8] QP GAMS 

Power loss (MW) 91.967 91.9669 92.1011 91.9662 91.967 

Total  generation (MW) 2591.967 2591.9669 2591.1011 2591.9662 2591.967 

Power Demand (MW) 2500 2500 2500 2500 2500 

Power Mismatch 0 0 0 0 0 

Total cost ($/hr) 62456.6391 62456.6341 62456.7926 62456.63309 62456.633 

 

Table 7. Best Power Output for 40-Unit System 

 VSHDE [23] SA [22] QP GAMS VCHDE [23] SA [22] QP GAMS 
Total  generation (MW) 10500 10500 10500 10500 9000 9000 9000 9000 

Power Demand (MW) 10500 10500 10500 10500 9000 9000 9000 9000 

Power Mismatch 0 0 0 0 0 0 0 0 

Total cost ($/hr) 143943.9 143930.409 143926.424 143926.424 121253.01 121245.164 121244.086 121244.086 

 
Table 8. Comparison of Results for 110-Unit System (Cost ($/H)) 

Loading 

condition 

Analytical 

[25] 

SA[26] SAB[26] SAF[26] RQEA[27] QP GAMS 

Low (10000 MW) 

best 1311941.8838 145550.4412 140385.7586 141107.8541 131941.8851  

131941.8837 

 

 

131941.8837 Average ----------------- 146757.706 141213.4207 141215.1159 131942.0439 

worst ----------------- 147476.4295 141900.2431 141398.0923 131942.4931 

Medium (15000 MW) 

best 197988.1775 216100.5475 206921.9057 207380.5164 197988.1393  
197988.1775 

 
197988.1775 average ----------------- 216365.7269 207764.7398 207813.3717 197988.1835 

Worst ----------------- 216823.5408 208197.0059 208012.6248 197988.2006 

High (20000 MW) 

Best 313211.5688 314647.0416 313279.8825 314532.8747 313211.5688   

313211.5688 

 

313211.5688 Average ----------------- 315695.1453 314271.7484 314635.3244 313211.5983 

Worst ----------------- 317385.2167 314723.8825 314783.5061 313211.8189 

 

6. CONCLUSION 

A QP approach and GAMS for optimization have 

been used for solving 4 test power systems. Case I is 

18-unit with quadratic cost characteristics without 

transmission loss and considering ramp rate limit 

constraint, which is investigated by change in 

percentage of maximum demand (95%, 90%, 80% and 

70%) and comparison is made with λ-iteration, Binary 

GA, RGA and ABC. Based on the simulated results, the 

QP and GAMS provides superior result than previously 

reported methods. In case II (20-unit test system) 

including losses, the obtained results are compared with 

λ-iteration, Hopfield Model, BBO algorithms. In this 

case also the QP and GAMS provides superior result 

than previously reported methods. Case III (40-unit) is 

investigated through two load demand levels and 

comparison is made with VSDE and SA. Case IV is a 

large scale system consists of 110-unit is employed to 

investigate the robustness of QP method through Three 

load demand levels. Compared to those obtained with, 

RGA and SGA and Hybrid GA reported in literature, 

the result shows that QP and GAMS performs better 

then above mentioned methods. The QP and GAMS 

algorithm has superior features, including quality of 

solution and good computational efficiency, but GAMS 

provides much better result than QP. The results show 

that GAMS is a promising technique for solving 

complicated problems in power system.  
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