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Abstract: The robust servomechanism problem consists in finding an LTI controller for the plant so that: 
(i) the resultant closed-loop system is asymptotically stable, (ii) asymptotic tracking occurs, and (iii) 
condition (ii) holds any arbitrary perturbation in the plant model (parametric uncertainty or dynamic 
uncertainty, including changes in model order) that do not cause the resultant closed-loop system to 
become unstable. 
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1. INTRODUCTION 
 The so-called servomechanism problem 
is one of the most basic problems to occur in 
the field of automatic control, and it arises in 
almost all application problems of the 
aerospace and process industries. In the 
servomechanism problem, it is desired to 
design a controller for a plant so that the 
outputs of the plant are independent, as much 
as possible, from disturbances which may 
affect the system (regulation occurs) and also 
such that the outputs asymptotically track any 
specified reference input signals applied to 
the system (tracking occurs), subject to the 
requirements of maintaining the closed-loop 
system stability. This paper examines some 
aspects of controller synthesis for the 
multivariable servomechanism problem when 
the plant to be controlled is subject to 
uncertainty. In this case, a controller is to be 
designed so that the desired regulation and 
the tracking take place in spite of the fact that 
the plant dynamics or/and parameters may 

vary by arbitrary, large amounts, subject only 
to the condition that the resultant closed-loop 
perturbed system remains stable. This 
problem is called the robust servomechanism 
problem. 
 The plant to be controlled is assumed to 
be described by the linear time invariant LTI 
model in state-space, with nRx∈  is the state, 

unRu∈  are the inputs that can be 
manipulated, znRz∈  are the outputs that are 
to be regulated, ynRy∈ are the outputs that 
can be measured, wnRw∈  corresponds to the 
disturbances in the system (which in general 
cannot necessarily be measured) and εε nR∈  
is the error in the system, which is the 
difference between the output y and the 
reference input signal yref, in which it is 
desired that the outputs y should track. 
 Two loop control structures are 
commonly used in motor drives, in speed 
applications and a third loop is added if 
positioning is required. This structure is 
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widely perceived as very satisfactory, both 
from a control standpoint and from an 
apparatus protection point of view [7], [6]. 
The purpose of this paper is to quantify the 
sub optimal of a standard PI controller, 
nested in two-loop control design algorithm 
for a DC motor in speed servo applications 
with respect to robustness of the system 
uncertainties. Specifically, we will focus on 
the case of an uncertain moment of inertia. 
Our analysis and design tools will be the 
Linear Matrix Inequality (LMI) based 
methods, as developed in [2]. These methods 
are applicable to any motor and uncertainty 
type and are extendable to positioning 
problems as well. 
 As can be expected, our numerical 
experiments suggest that robust design 
procedures, such as the LMI method, offer 
potentially significant improvements in 
robust performance, in cases of large model 
uncertainties. Yet in low comparable cases, 
the LMI design method gives truly 
satisfactory dynamical response. 
 The paper re-examines the standard 
nested two-loop controller structure for a 
permanent magnet DC motor in speed servo 
applications. A robust synthesis, via Linear 
Matrix Inequalities (LMI) design, is 
compared with a conventional pole placed 
design. An analysis of a generic example 
demonstrates that robust design offers 
noticeable improvements in performance 
only in cases of relatively large model 
uncertainties. 
 
2. MODELLING DC MOTOR 

 A common actuator in control systems is 
the DC motor. It directly provides rotary 
motion and coupled with wheels or drums 
and cables, can provide transitional motion. 
The motor torque, T, is related to the 
armature current, ia, by a constant factor KT. 
The back electromotive force (e.m.f.), e, is 
related to the rotational velocity by the 
following equations: 

.
,

ωe
aT

Ke
iKT

=
=

 

 The DC motor is provided by a pulse 
with modulated (PWM) voltage source in a 
majority of applications. A PWM power 
supply is an intrinsically non-linear device 
due to the switching mode of operation and 
saturation. At low frequencies the PWM unit 
is well approximated by a linear gain KPWM, 
such an approximation being inaccurate at 
higher frequencies. Control gain roll off 
requirements are thus included in the 
conventional design algorithm. In order to 
make a meaningful comparison between the 
conventional and the robust controllers we 
require that control gains have comparable 
bounds at high frequencies. The control 
signal uc is amplified by PWM amplifier to 
create the armature voltage ua: 

.cPMWa uKu =  

 The DC motor equations based on 
Newton's law combined with Kirchhoff's law: 

ω

ωω

eaaa
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where: 

J [kg.m2/s2]: Moment of inertia of 
the rotor; 

B [N.m.s]: Damping ratio of the 
mechanical system; 

K= 





.sec/.rad
V : 

Back e.m.f.constant; 

KT [N.m/A] Torque constant 
R[Ω]: Electric resistance; 
L[H]: Electric inductance; 
ia [A] The armature current; 
ua [V]: The input (armature) 

voltage 
TL [N.m] The load torque; 







.sec
.rad

ω : 
The angular speed; 

 
 These equations can also be represented 
in state-space form. If we choose armature 
current and motor angular speed as our 
variables, we can write the equations as 
follows: 
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 The block diagram of DC motor it is 
shown in figure 1, [7]. 
 We consider the following numerical 
values: La=2.75E-6H, Ra=4Ω ,J=3.23E-6 
kg.m2/s2, B=3.51E-6 N.m.s, KT=0.0274 
N.m/A and Ke=0.0274 N.m/A. 
 
3. CONVENTIONAL CONTROLLERS 
 A simplified model of a servo DC motor 
is presented in figure 1. It is assumed that the 
measurements of the motor speed ω and the 
armature current ia are available and that the 
control input is the voltage reference signal 
uc, see figure 2. 
 A PI controller: 

( ) ,1
s

KKsK aaa i
i

i
p

i
PI +=  

for the current loop is designed in the first 
step. Here we ignore the back e.m.f. 

Ea(s)=keΩ(s), assuming that the current loop 
response dynamics is much faster. With this 
assumption, the closed loop current transfer 
function is: 

( ) PWM
i
iaPWM
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 We also ignore the relatively small 

effects of Raia on 



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assumption, the closed loop current transfer 
function is: 

PWM
i
iPWM

i
pa

PWM
i
iPWM

i
pi

cl KKsKKsL
KKsKK

G
aa

aa

a

++

+
≅ 2 . 

 We select the natural frequency 

π
ω
2

a
a

i
ni

nf =  to be one tenth of the PWM 

switching frequency fPWM (to ensure the 
validity of a linear approximation) and the 
damping 1=aiζ  The coefficients ai

pK  and 
ai

iK  are then derived from the equations: 
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 The design of the PI speed controller: 

( ) ,1
s

KKsK ipPI
ωωω +=  

 In the second step, a similar procedure is 
the following: the friction effects are 

Figure 1. The block diagram of DC motor. 

Figure 2. Block diagram of the conventional nested DC motor control structure. 
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neglected and the much faster current loop is 
approximated by the identity. The latter is 
justified by the selection of the speed closed 
loop natural frequency to be one tenth of that 
of the current loop. Under these assumptions, 
the closed loop angular speed transfer 
function is: 

TiTpa

TiTp
cl KKsKKsL

KKsKK
G ωω

ωω
ω

++

+
≅ 2  

 Again a damping 1=ωζ  is fixed. The 
coefficients ω

pK  and ω
iK  are then derived 

from the equations: 

( ) ωω
ω

ω
ω

ωζω n
Tp

n
Ti

J
KK

J
KK 2,2

==  

 For our example we calculated the 
following data: 

.sec
.10*924.0 3 rad

ai
n =ω , ,

.sec
.10*924.0 2 rad

n =ωω  

,0965.0=ai
pK  ,467.45=ai

iK  

,4495.0=ω
pK  1817.21=ω

iK . 

 Closed loop time responses are computed 
and depicted in figure 3, when the load inertia 
varies from 100% to 200% of its nominal 
value. We have assumed a constant load 
torque of TL=0.4[N.m] and speed reference 
tracking ±5%-variations from nominal value 





==

.sec
.50][1500 radrpmsp πω . 

4. LMI CONTROLLER 
 Performance specifications (see [5]) for 
reference tracking and load rejection were 
based on the performance that was achieved 
in conventional design. The first step in the 
design procedure is to specify a generalized 
plant transfer matrix. The generalized plant G 
comprises the model of the original system 
and the various weighting functions that 
represent performance specifications. Plant 
uncertainty is represented by an unspecified 
block ∆  with a known ∞H  norm bound, 
interacting with G via disturbances signals 
( wnRw∈ ) and controlled signals that are to 
be regulated ( znRz∈ ). The generalized plant 
is driven by the exogenous multivariable 
inputs w, including disturbances, sensor noise 
and the tracking reference. A controlled 
outputs z, represents tracking errors, actuating 
commands and outputs that can be measured. 
The closed loop mapping zw→:Tzw  is 
required to be contractive. A stabilizing 
feedback controller, K, to be designed, will 
use the measured signal y and produces the 
control input u. 
 A speed loop PI controller and a current 
loop proportional controller ( 0=ai

iK  in 
figure 2) comply with a: 

a) closed loop robust stability for 
rotor inertia J varying from 100% to 200%; 

b) reasonable speed tracking 
performance; 

c) bounding of the command 
input uc; 

d) current limiting ia. 
 The LMI-based controller design will be 
designed in three steps [3]: first, augmented 
the system by a Linear Fractional 
Representation (LFR); then, deducing of 
Linear Matrix Inequalities (LMI’s) that 
ensure the above specifications; finally, is 
showing of the results by numerical 
simulation. 
 

4.1. A Construction of the LFR 
 The LFR model can be constructed 
systematically, starting by the system's 
dynamic equations (see [1]). It results in a 

Figure 3. Conventional design: closed loop time 
response of the angular speed (ω ) and current ia , 

when load inertia varies from 100% to 200% of the 
nominal. 
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model like the form depicted in figure 4, 
where the G(s) represents the nominal linear 
time-invariant system [4]. 

 The matrix ( )J∆  contains rotor inertia 
uncertainties and is connected to the nominal 
system via input w and output z. We can 
write: 
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where JN is the rotor inertia nominal value 
and Jδ  represents the rotor inertia 
uncertainty such that ( )JNJJ δ+= 1 , 13xRx∈  
is the state 
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4.2. LMI Conditions 

 We can readily normalize the system 
above so that it can be written as [8]: 
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 As can be seen in [2], [3], it is possible to 
formulate the synthesis conditions that ensure 
specifications (a)÷(d), as defined previously, 
in a set of LMI constraints. The problem is 
equivalent to 0,0 >>∃ TQ  and Y=KxQ 
such that: 
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 The LMI condition that ensures a bound 
umax on the command input u(t) for every 
initial condition x0 in the ellipsoid 

{ }1| ≤= Qxxx T
Qε  is: 

0
2
max ≤




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
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QY
YIu

T  

 For every initial conditions that belong to 

the ellipsoid Qε , some bounds 
_____

max ,1, z
i niz = , 

can also be ensured for outputs xCz i
zi =  with 

LMI constraints: 

( ) ( ) _____
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2

max ,1,0 z
iTi

z
i
z

i nizCQCz =≥− . 

 
4.3. Simulation 

 The numerical results are obtained with 
the MATLAB. We synthesized a controller 
that ensures speed reference tracking for 
±5%-variations from its nominal value. We 
assume a constant load torque of TL=0.4 
[N.m] and require a velocity (angular speed) 

of 



==

.sec
.50][1500 radrpmsp πω . This design 

Figure 4. Linear Fractional Representation for 
uncertain non-linear systems. 
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provides the robustness of the closed-loop 
system with respect to rotor inertia 
uncertainties and so that the saturation 
bounds for current ( ][10max Aii aa =≤ ) and 
voltage ][5max Vuu cc =≤  are not exceeded. 
 We impose a strong decay-rate by setting 

65=α  and find the controller 
1411.0=ai

pK 7514.0=ω
pK 8043.45=ω

iK . 
 We plot in figure 5 the responses of the 
closed loop system of angular speed (ω ) and 
current (ia) when the load inertia varies from 
100% to 200% of its nominal value. 

 
5. CONCLUSIONS 
 Two loop control structures are 
commonly used in motor drives, in speed 
applications. In this paper is to quantify the 
sub optimal of a standard PI controller, 
nested in two-loop control design algorithm 
for a DC motor in speed servo applications 
with respect to robustness of the system 
uncertainties. Specifically, we will focus on 
the case of an uncertain moment of inertia. 
Our analysis and design tools will be the LMI 
based methods. These methods are applicable 
to any motor and uncertainty type and are 
extendable to positioning problems as well. 
 The paper re-examines the standard 
nested two-loop controller structure for a 

permanent magnet DC motor in speed servo 
applications. A robust synthesis, via LMI 
design, is compared with a conventional pole 
placed design. An analysis of a generic 
example demonstrates that robust design 
offers noticeable improvements in 
performance only in cases of relatively large 
model uncertainties. 
In this paper, we have extended state-
feedback control to systems with parameter 
uncertainties. The controller presented (via 
LMI’s) shows excellent robustness 
characteristics in comparison with the 
classical controller design. This work 
demonstrates that state-feedback robust 
controller via LMI’s is very efficient and 
flexible in practical problems. 
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Figure 5. LMI based design: closed loop time 
response of angular speed (ω ) and current (ia), when 

load inertia varies from 100% to 200% of the 
nominal. 
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