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Abstract: In this paper an approach for the throughput evaluation of the manufacturing systems is 
presented. The throughput is evaluated with a heap-based algorithm for the Petri nets. The Petri nets 
model is a stochastic one, and the firing rate of the transitions are calculated with Markov chains models 
of the component subsystems of the manufacturing system. The advantages of this approach are: 
- constructing a system level Markov chain (a complex task) is not required; 
- it permits to evaluate transient and steady-state performance of alternative designs based on different 

availability’s of the system’s components; 
- the heap based throughput algorithm is simpler than the traditional timed event graph version. 
 
Key words: Stochastic Petri nets, Markov chains, system availability, heaps of pieces. 

 
I. INTRODUCTION 
 
 Manufacturing systems include a set of 
manual operations, and a set of automatic 
operations. A major consideration in 
designing a manufacturing system is its 
performance. When a machine or other 
component of the system fails, the system 
reconfiguration is often less than perfect. The 
notion of imperfection is called imperfect 
coverage, and it is defined as probability c 
that the system successfully reconfigures, 
when components break down [1]. We 
assume that when the repair of the failed 
component is completed it is not as 
performance as a new one. In this paper a 
dependability model for evaluating the 
performance of a manufacturing system is 
presented. The meaning of dependability is: 
- System availability; 
- Dependence of the performance of 

manufacturing system on the performance 
of its subsystems and components; 

- Dependence of designing the stochastic 
Petri nets model, Markov chains, and 

special automata over the (max, +) 
semiring, which compute the height of 
heaps of pieces (respectively the 
throughput of the system). 
Stochastic Petri nets (SPN) were 

developed by associating transitions/places 
with exponentially distributed random time 
delays [2], [3]. These methods are based on 
results obtained from the underlying Markov 
chain for such systems. Extended SPN were 
developed to allow generally distributed 
transitions delays in the case of non-
concurrent transitions. For concurrent 
transitions, exponential distribution is 
required for exact solutions. The underlying 
models of these PN are semi-Markov 
processes. Heaps of pieces: In [4], Viennot 
observed that trace monoids are isomorphic 
to heap monoids, that is monoids in which the 
generators are pieces (solid rectangular 
shaped blocks), and where the concatenation 
consists of piling up one heap above another. 
This yields a very intuitive graphical 
representation of trace monoids. For us, a 
useful interpretation of a heap model consists 



Volume 44, Number 2, 2003 

 

133

of viewing pieces as tasks and slots as 
resources, where by slots we use the 
following model [5]. A piece is a solid block, 
occupying some of the slots, with staircase-
shaped upper and lower contours. With an 
ordered sequence of pieces, we associate a 
heap by piling up the pieces, starting from a 
horizontal ground. A piece is only subject to 
vertical translations and occupies the lowest 
possible position, provided it is above the 
ground and the pieces previously piled up. 
 
II. THE STOCHASTIC PETRI NETS 

MODEL OF A MANUFACTURING 
SYSTEM 

 
 A SPN is a six-tuple (P,T,I,O,m,F), 
where: 
P={p1, p2, …, pn}, n>0, is a finite set of 
places; T={t1, t2, …, ts}, s>0, is a finite set of 
transitions with P∪T≠0, P∧T=∅; I: P×T→N, 
is an input function where N={0,1,2,…}; O: 
P×T→N, is an output function; m: P→N, is a 
marking whose i-th component is the number 
of tokens in the i-th place. An initial marking 
is denoted by m0; F: T→R, is a vector whose 
component is a firing time delay with an 
extended distribution function. By extended 
distribution functions, we mean that 
exponential distribution functions are allowed 
for concurrent transitions. Two transitions are 
said to be concurrent at marking m if and 
only if firing either does not disable the other. 
The firing rule for an SPN provides that when 
two or more transitions are enabled, the 
transitions whose associated time delays is 
statistically the minimum fires. According to 
the transition-firing rule in PN, when a 
transition tk has only one input place pi, and pi 
is marked with at least one token, tk is 
enabled. The enabled transition can fire. The 
firing of tk removes one token from the pi and 
then deposits one token into each output 
place pj. Let P(i,k) be a probability that 
transition tk can fire. The process from the 
enabling to the firing of tk requires a time 
delay, τk. This delay τk of a transition can be 
either a constant or an extended random 
variable in SPN. P(i,k) and M(s) depend on τk 
as well as the current marking and the time 
delays of other enabled transitions at that 

marking. M(s) denote the moment generating 
function, and is defined as follows: 

( ) ( )stM s e f t
+∞

−∞

dt= ⋅ ⋅∫   (1) 

where s is an extended parameter, and f(t) is a 
probability density function of random 
variable t. Of course, we have: 

( ) ( )0M f t dt
+∞

−∞

1.= ⋅ =∫  A transfer function of 

a stochastic Petri net [4] is defined as the 
product P(i,k)⋅M(s), and is: 

( ) ( ) (,kW s P i k M s= ⋅ )   (2) 

 Transition tk characterized by P(i,k) and 
τk is expressed by a transition characterized 
by Wk(s). Three fundamental structures can 
be reduced into a single transition. The 
reduction rules can be used to simplify some 
classes of PN. With these reduction rules we 
transform PN into finite state machines (in a 
finite state machine each transition has only 
one input and output place, and there is one 
token in such a net). Fig.1, a,b,c depict these 
reduction rules.  
 The moment generating functions for the 
state machine PN which models the 
manufacturing systems represent the 
availability of the cells (subsystems) which 
form the PN, and are computed with Markov 
chains models of the subsystems as shown in 
the following capitol. 
 
III. AVAILABILITY OF A 

MANUFACTURING SYSTEM 
 
 We defined above the notion of 
imperfect coverage, c. We will show the 
impact of imperfect coverage on the 
performance of the manufacturing system. 
We will demonstrate that system availability 
will be seriously diminished even if this 
imperfect coverage constitutes a small 
percentage of the multiple possible flaws of 
the system. This aspect is generally ignored 
or overlooked in the current managerial 
practice. The availability of a system is one 
probability that should be operational when 
needed. This availability can be calculated as 
the sum of all probabilities of operational 
states of the system. To calculate the 
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availability of a system we need to determine 
the acceptable levels of functioning degree of 
the system’s states. The availability of the 
system is considered acceptable when the 
production capacity of the system can be 
assured. Considering the big dimensions of a 
manufacturing system, the multiple 
interactions among its elements as well as 
between the system and the environment, in 
order to simplify the graphs and reduce the 
amount of calculus we will divide the system 

into two subsystems. These two subsystems 
are the following: equipment subsystem (the 
machine factor) and the man subsystem (the 
human factor in manufacturing activities). In 
its turn the equipment system is divided into 
cells. The Markov chain is built for each cell 
i, where i=1,2,…,n (n represents the number 
of cells into which the equipment and human 
systems are divided) to determine the 
probability for at least ki equipment to be 
operational at a certain moment t, where ki 
represents the minimum of well functioning 
equipment which preserves the cell i 
operational (for the equipment subsystem), 
respectively to determine the maximum 
allowed number of wrong actions of the 
workers (human subsystem). The availability 
of the system is given by the probability of 
the operator doing his duty between ki 
operational equipment in cell i and ki+1 
operational equipment in cell i+1, at moment 
t. Supposing the levels of the subsystems are 
statistically independent, the availability of 
the system is: 

a)   ( ) ( ) ( )sWsWsWk 21 ⋅=  

Wk(s) P2P1

t2P P Pt11 2 3

W (s)W (s) 21  
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( ) ( ) ( )( )
1

n

im ih
i

A t A t A
=

= ⋅∏ t   (3) 

where: A(t) = the availability of the 
manufacturing system (man-machine 
system); Aim(t) = the availability of the i cell 
in the equipment system at moment t; Aih(t)= 
the availability of the cell i in the human 
subsystem at moment t. 
 
IV. THE EQUIPMENT SYSTEM 
 
 The expectation of an i cell of the 
equipment system which includes Ni 
equipment of the type ni is to ensure the 
functioning of at least ki of the equipment for 
the system to be operational. To determine 
the availability of the system including 
imperfect coverage and faulty repairs for 
each cell there has been introduced a state of 
malfunctioning caused either by imperfect 
coverage or by technical failure. To explain 
the effect of imperfect coverage of the system 
we will consider that operation O1 can be 
made with one of the equipment M1, 
respectively M2. 
 If the coverage of the subsystem in Fig.2 
is perfect, that is c=1, then operation O1 is 
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Figure 1. Equivalent transfer functions for three 
basic structures of PN. 
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fulfilled as long as at least one of the 
equipment is functional. If the coverage is 
imperfect operation O1 fails with the 
probability 1-c if one of the equipment M1 or 
M2 breaks down. In other words, if operation 
O1 has programmed on equipment M1 which 
broke down then the system in Fig.2 fails 
with the probability 1-c. The Markov chain 
made for cell i in the equipment subsystem is 
given in Fig.3. The coverage factor is cm, the 
rate of breaking down of a piece of 
equipment is λm (and is exponential), the 
repairing rate of the equipment is μm (which 
is also exponential), the factor of successful 
repairing of a piece of equipment is rm. In 
state ki cell i only has ki operational 
equipment. The state of cell i change from 
working state ki into break down state Fki or 
to imperfect coverage (1-cm), either due to 
faulty repairing (1-rm). The solution of the 
Markov chain in Fig.3 is the probability that 
at least ki equipment should function in cell i 
at moment t. 
 We can calculate this probability 
according to the following formula: 

=

Ai(t)  ( ), i  1,2, ,n         
i

i

i

N

k

k k

P t= = …∑    (4) 

where: Ai(t) = the availability of cell i at 
moment t; Pki(t) = probability that, at 
moment t, cell i should contain ki operational 
equipment; Ni =  number of Mi equipment in 
cell i; ki = minimum number of operational 
equipment in cell i. 

M1 

 
V. THE HUMAN FACTOR 

SUBSYSTEM 
 
 The expectation from the human factor 
subsystem is that it should ensure the 
exploitation of equipment with maximum 
efficiency and safety. To determine the 
availability of the operator to be capable of 
performing his duty at moment t, we build 
this Markov chain (Fig.4) which models the 
behavior of the cell i of the human 
subsystem. In Fig.4, we have:  
λh = the rate of wrong actions of the operator; 
μh = the rate of correct actions of the operator 
in case of break down; ch = the covering 
factor of problems caused by wrong actions 
or by unexpected events occurred in the 
system; rh = the factor of correcting wrong 
actions of operators. 
 In Fig.4 the human operator can be in 
one of the following states of performing his 
job: state Ni = normal working state in which 
actions are performed by all Ni operators of 
cell i; state ki = working state where actions 
are performed by ki operators (ki<Ni); state 
F(ki+u) = working state allowing incorrect 

 O1 

 M2 

Figure 2. Subsystem consisting of one operator 
and two machines. 
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Figure. 3. Markov model for cell i in the equipment 
subsystem. 
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Figure 4. Markov model of cell i corresponding to the 
human factor subsystem 
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actions which can cause technological 
malfunctioning with no serious consequences 
on the safety of traffic, where u = 0,...,Ni-ki; 
state Fk = state of working incapacity due to 
wrong actions with serious consequences on 
traffic safety. 
 The availability of the human factor due 
to perform his duties under normal 
circumstances is: 

ih
 = j

A (t)  ( ), 1,2,...,i

m

x
x

P t i n= =∑  (5) 

Where: Pxi(t) = the probability that the 
operator is in working state x at moment t, in 
cell i;  
m = total number of working states allowed 
in the system; j = minimum allowed number 
of working states.  
Attributing supplementary working states to 
the human factor considerably increases the 
complexity of the calculus, and furthermore, 
although the entire system continues to work, 
certain technological norms are disregarded 
which leads to low throughput in the 
manufacturing system. 
 
VI. PERFORMANCE EVALUATION OF 

A MANUFACTURING SYSTEM 
 
 A manufacturing system is specified by 
the following properties: 1) A finite set R of 
resources (machines and operators); 2) A 
finite set T of elementary tasks; 3) For each 
task d∈T, a duration τ(d) and a single 
machine cell i, R(d)∈R on which d is to be 
executed; 4) A finite set B∈T of production 
sequences or jobs. Each job J=a1a2…ak∈∈B 
is composed of a finite number of tasks a1, a2, 
…, ak to be executed in this order. A job is 
produced each time the sequence J is 
completed. This model is equivalent to the 
one given in [5], where the following 
algorithm for the performance evaluation of 
safe jobs (the assumption of safe job is 
equivalent to state machine Petri net as 
defined above). The algorithm has the 
following steps: Input: a job-shop, a pattern 
of transitions v; 1) Build the heap model, and 
its associated matrices [5] M(d), d∈T; 2) 
Compute the product of matrices M(v); 3) 
Compute the (max, +) value of M(v), 

ρ(M(v)), using Karp algorithm, where 
ρ(M(v)) is the (max, +)value of M(v). In [5] 
it is shown that this algorithm has the 
complexity O(|v|(|B|+|R|+(|B|+|R|)3). We 
notice that this algorithm, in comparison with 
other algorithms for performance evaluation 
in discrete event systems, do not need a new 
time event graph to be build for each new 
schedule. This is of great advantage for us, 
because we give to the random variables 
different values in order to build different 
scenarios for the manufacturing system 
optima schedule. 
 
VII. CONCLUSIONS 
 
 Our work develop heuristics and 
performance bounds for scheduling, based on 
heap and automata representation. The 
performance of a manufacturing system is 
evaluated, in many scenarios, with a SPN in 
which a transition can be associated with 
either a constant or random firing time delay 
with an exponential distribution, computed 
with a Markov model which incorporates the 
notion of imperfect coverage, and imperfect 
repair factors. An advantage of the Markov 
model is that the manufacturing of large 
Markov chains is not required. Another 
advantage is that it allows performing 
sensitivity analysis of an entire 
manufacturing system, as well as of its 
components. The novelty of this approach is 
that it incorporates the availability of the 
human factor. We can generalize the 
proposed approach, when instead of 
decomposing the global system in two major 
subsystems, one can decompose the system 
into three, four, … subsystems, according to 
the specific application. We may notice that a 
large number of subsystems determine an 
embarrassing growth of the calculus 
complexity. In this paper we assumed that the 
failure and repair times were exponential 
random variables. In real manufacturing 
systems, the time distributions are arbitrary, 
which can be handled semi-Markov 
processes. A state transition may not occur at 
any time, and the failure/repair time can 
follow an arbitrary distribution. When a 
failure/repair event occur, the Markov 
process representation applies, and the 
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probability of burning a transition to a new 
state depends only on the current value of 
state. 
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