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Discrete Hilbert Transform. Numeric 
Algorithms 
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Abstract - The Hilbert and Fourier transforms are tools used for signal analysis in the time/frequency 
domains. The Hilbert transform is applied to casual continuous signals. The majority of the practical 
signals are discrete signals and they are limited in time. It appeared therefore the need to create numeric 
algorithms for the Hilbert transform. Such an algorithm is a numeric operator, named the Discrete Hilbert 
Transform. This paper makes a brief presentation of known algorithms and proposes an algorithm derived 
from the properties of the analytic complex signal. The methods for time and frequency calculus are also 
presented. 

 
1. INTRODUCTION 
 
 Signals can be classified into two classes: 
analytic signals (for instance tAtx ωsin)( = ), 
and experimental signals (measured signals). 
The last category represents real signals and is 
of great importance in applications. 
 An experimental signal represents a signal 
observed during a limited interval of time. It is 
a sample of the original signal, which 
characterizes a physical process of interest. 
 The experimental signal can be a 
continuous time signal (analogical), or a 
digital signal (discrete). 
 The practical limitations of the systems 
used to analyze analogical signals impose that 
the experimental analogical signals had a 
limited frequency band [1],[2]. 
 If the original signal doesn’t have a 
limited band, a low-pass filtration needs to be 
applied in order to obtain the experimental 
signal which will be analyzed. 
 The rule also applies to sampled signals, 
which need to have a limited frequency band 
too. 
 As a result, before acquisition, the 
experimental analogical signal will be low-
pass filtered. 
 The acquisition frequency needs to be two 
times the biggest frequency of the signal’s 

spectrum in order to avoid the aliasing process 
– the Nyquist condition. 
 The discrete signal will be analyzed on a 
computer system, which implies its 
digitization (the digital signal is the discrete 
signal converted in binary format, accordingly 
to the adopted analog/numeric conversion; in 
most of the cases, the signal acquisition 
hardware also does the digitization of the 
signal samples). The resulted digital signal has 
the greatest importance in numeric analysis 
operations. 
 Some other remarks need to be made. 
Since the sampled signal has a limited length, 
it needs to either (1) have a infinite frequency 
spectrum, or (2) be a periodic signal. In case 
(1), the sampling doesn’t respect the Nyquist 
condition. Or, in case (2) we choose to 
represent the signal as a periodic one, with an 
extended period. In both cases, the digital 
signal cannot exactly represent the original 
physical process. 
 In the case of the Hilbert transform, it’s a 
known fact that the signal x(t) needs to be 
causal (that is x(t)=0, for t < 0). The sampled 
signal x[n] is in this case a non-periodic 
sequence, real and causal. 
 In such a case, we can talk of a discrete 
Hilbert transform applied to the sequence x[n]. 
 The complex analytic signal associated to 
the x[n] sequence has the spectrum different 
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from zero only for the interval of positive 
frequencies. 
 When x(t) is a periodic signal, x[n] is a 
periodic sequence and we cannot talk of 
causality (the periodic term implies the 
sequence extension from ∞−  to + ). A 
calculus algorithm for the Discrete Hilbert 
Transform in this case imposes the condition 
that the Discrete Fourier Transform of the 
complex analytic sequence to be equal to zero 
in the interval of negative frequencies. And of 
course, for positive frequencies, the spectrum 
of the analytic sequence to be two times the 
spectrum of the signal x[n]. In this case, the 
Hilbert transform can be used with all its 
known advantages regarding the causal 
signals. 

∞

 The next paragraphs present the methods 
for calculating the Discrete Hilbert Transform. 
 
2. HILBERT TRANSFORM IN 

CONTINUOUS TIME 
 
 To start, we present first the theory of the 
Hilbert transform, definitions, properties [2], 
[10]. 
 Let’s consider a real measurement signal: 
  (1) )2()( L∈tx

Where is the signal class with integral 
square. 

)2(L

 The Hilbert transform of the signal x(t) is: 

 { } τ
τ
τ

π
d

t
xpvtxtx ∫

∞

∞− −
⋅==

)(1)()(ˆ H  (2) 

v.p. ⎥⎦
⎤

⎢⎣
⎡

−
+

−
=

− ∫ ∫∫
−

∞−

∞

+→

∞

∞−

ε

εε
τ

τ
ττ

τ
τ

τ
τ t

t
d

t
xd

t
xdt

t
x )()(lim)(

0
, 

where v.p. represents the functional named 
principal value. 
 )(tx  is improper named the conjugate of 
x(t). 
 We also have (2)L∈)(tx . 
x(t) is the inverse Hilbert transform of )(tx : 
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 Let’s observe that )(tx  is determined by 

the convolution of x(t) with the signal 
tπ
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 The above relation allows the calculus of 
the spectral density of )(tx : 
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 As a result, the spectral density function 
of the x(t) signal’s conjugate is obtained by 
changing the phase of the spectral density for 

( )X jω  by ± π/2. 
 It results: 

 { } { }ˆx (t) ( ) ( )x t X jω= =H F -1  (9) 

 The inverse Hilbert transform is defined 
in relation (3). We can write: 
 { } { }(t)-1 x̂)()( HH −== txtx  (10) 
 Taking into account relation (8) it results: 
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 The analytic signal 

 Having the pairs x (t) and { }(t)x)( H=tx  
we build the analytic signal z (t) : 
 )()()( txjtxtz +=  (12) 
 We observe that: 
 { } )) (jωXj(jωX(t)zF)jω(Z +== (13) 
 Referring to relation (7) we obtain: 
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where u (ω) is the unit step function. 
 It’s useful to observe that: 
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3. DISCRETE HILBERT TRANSFORM. 

CALCULUS ALGORITHMS. 
 
 Definitions 

 Having the signal x(t) defined on the time 
interval [0, tN], using a sampling period Te, we 
obtain the discrete signal x[n] : 

 [ ] ( ), 0, 1ex n x nT n N= ∈ −  (16) 
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that the frequency 
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 The discrete Fourier transform (DFT) is: 
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 And the inverse discrete Fourier transform 
DFT-1 is: 
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 The sample of the spectral density 
corresponding to frequency 0ωk  is determined 
with the relation: 
 ][)( 0 kXTkjX e=ω  

where X(jω) is the Fourier transform in 
continuous time. 
 On the other hand: 
  (19) [ ]* [ ] [ ].X k X N k X k= − = −

Which shows that the sample 
][][ kXkNX −=−  has a correspondent 

sample of the spectral density, with the 
negative frequency )0( ωk−X . 
 For N – even, the samples 

 
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −1

2
],...,2[],1[ NxXX  

are named „positive harmonics”, while the 
samples: 

[ 1], [ 2],..., [ 2], [ 1]
2 2

1 , 2 ,..., [ 2], [ 1]
2 2

N NX X X N X N

N NX X X X

⎧ ⎫+ + − − ≡⎨ ⎬
⎩ ⎭
⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞≡ − − − − − −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭

 

are named „negative harmonics”. 
 For N – odd, the samples 
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are called „negative harmonics”. 
 The X[0] component is the continuous 

component, while the ⎥⎦
⎤

⎢⎣
⎡

2
NX  (N - even) is the 

Nyquist component. It is found when the 
number of samples, N, is even – a situation 
frequently found because DFT is implemented 
using an algorithm for which N is even. Also, 
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 Similarly to relation (10), the discrete 
Hilbert transform is defined: 
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 We observe that the continuous and 
Nyquist components are excluded (for k = 0 

and 
2
Nk = ). 

 While for N - odd: 
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Where the continuous component is excluded. 
 
 Calculus Algorithms 
 Relation (20) can be written: 
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S[k] is a window which filters the interest 
components of the Hilbert transform. 
Observations: 
 The sequence  can be obtained: [ ]S k
1) Using the function: 
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N
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2) Or the function [10]: 
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 The following methods of calculating the 
discrete Hilbert transform result: 
 
 

3.1. The inverse discrete Fourier 
transform algorithm 

 Is based on relations (20) – (21.a) : 
1) We determine the discrete Fourier 

transform of the numeric sequence x [n]: 
 { }][][ nxTFDkX =  
2) We set the continuous component to zero: 
 X[0]=0 
3) If the length N of sequence X[k] is even, 

we set the Nyquist component to zero: 
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(negative harmonics) are multiplied by +j. 
6) We calculate the discrete Hilbert transform 

using relation (20) . 
 

3.2. Windowing the positive and negative 
frequencies algorithm 

 Is obtained by applying a window to the 
positive and negative spectral components, 
except for the continuous and the Nyquist 
components. This algorithm is based on 
relations (22) – (24): 
1) N is chosen, the number of sampling 

points. 
2) S[k] is determined, using relation (24.b). 
3) The discrete Fourier transform of the 

numeric sequence x[n] is calculated: 
 { }][][ nxTFDkX =  
4) We determine  

  ˆ [ ] [ ] [ ]X k jS k X k= −
5) And then we determine 

 { } { }1[ ] [ ] [ ] [ ]x n H x n TFD jS k X k−= = −  

 This algorithm is, at first view, similar 
with the previous one, except for the last two 
steps. 
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3.3. The convolution algorithm 
1) We determine 
 { }1[ ] [ ]s n TFD jS k−= −  (25) 

2) It results: 
 ][][][ nsnxnx ⊗=  (26) 
 That is: 
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 In [10], s[n] has this expression: 
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And s[n] doesn’t become equal to zero for n 
even or odd. Let’s note that 

1,1],[][ −=−=− NnnskNs . 
 This algorithm seems to be computed in a 
shorter time. In fact, it requires a longer time 
than the algorithms that use the discrete 
Fourier transform. This is explained by the 
fact that for DFT were developed fast calculus 
algorithms (FFT -Fast Fourier Transform). 
Observation 
 In literature we meet the relation: 
 { }1[ ] [ ]s n TFD S k−=  (30) 

And then ][nx  is calculated using this 
relation: 
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3.4. Windowing the positive frequencies 

algorithm 
 We now propose a new algorithm for 
calculating the discrete Hilbert transform. 
 Similarly to relation (12) the discrete 
complex analytic signal is defined (also called 
complex analytic sequence): 
 ]  (31) [ˆ][][ nxjnxnz +=

 The discrete Fourier transform of the z[n] 
signal is: 
 { }][][ nzTFDkZ =  (32) 
 Looking at (13 c) it can be written: 
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 The window sequence R[k] is introduced: 
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 It can be observed that: 
 [ ] [ ]( [ ] 1)R k S k S k= +  (33 c) 
 In a more compact form it can be written: 

 [ ] [ ] [ ], 1, 1Z k R k X k k N= = −  (34) 
 This relation results: 
 { }1[ ] [ ] [ ]z n TFD R k X k−=  (35) 

Where DFT-1 has the meaning of the inverse 
complex Fourier transform. It results that: 
 { }][Re][ nznx =  (36) 
And: 
 { } { ][Im][][ˆ nznxTHDnx = }=  (37) 
 Relations (31), (37) are leading to an 
algorithm which allows calculating the 
discrete Hilbert  transform. 
 Observation: The relation (35) can also be 
written as: 
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 The relation (38) doesn’t have a practical 
use since the numeric signal analysis 
environments already have instruments for 
computing the DFT – ( FFT ). As a result, it is 
preferred the algorithm expressed by the 
relations (31) – (32). 
 
4. INVERSE DISCRETE HILBERT 

TRANSFORM  
 
 Is determined using the relation: 
 { } { ][][1 nxnx HH −=−  (39) 
 If N, the sequence length is odd and the 
continuous component is missing we can 
write: 
 { } ][][1 nxnx =−H  (40) 
 If N is even, while the continuous 
component is different from zero or if N is 
odd, that is we have the Nyquist component, 
then relation (40) is not strictly true any more. 
 Algorithms of the inverse discrete Hilbert 
transform similar to those presented above for 
the direct discrete Hilbert transform result. 
 
5. RESULTS AND CONCLUSIONS 
 
 This paper briefly presents known 
algorithms for calculating the Hilbert 
transform and proposes and algorithm based 
on the properties of the complex analytic 
signal. The methods of computation in time 
and frequency domains are presented. For 
applications where the hard/soft throughput as 

well as time are important issues, this 
algorithm could represent an advantage. 
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