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This paper discusses an algorithm for simulation, computation and control of the hybrid systems. The 

algorithm is known under the name the differential dynamic logic (dL). The hybrid systems are 

complex dynamical structures that couple the continuous motions with discrete motions of their 

constituents. Hybrid systems can be found in the biomedical industry, robotics, automotive, railway 

and aerial navigation. A system can flow or jump, can slip or collide with objects, or can be a 

cooperative surgeon-robot. A bouncing ball, for example, is an example of hybrid system that can 

exhibit continuous motions between each bounce and discrete motions between impacts to ground. 

This behavior describes a system with an infinite number of jumps in a finite interval of time. The dL 

incorporates the discrete and the continuous behavior of the system and can be used for computation 

and control of a hybrid system with uncertain boundary data modeled as a lognormal random field. 

This paper discusses the behavior of a cooperative surgeon-robot in which the coupling between the 

continuous motions of the surgeon and the discrete motions of the robot are incorporated in a single 

routine in which the computation, physical aspects and control are interacting. 

Keywords: Hybrid systems; Differential dynamic logic control; Motion trajectories; Uncertain 

boundary data.   

1. INTRODUCTION 

Substantial progress was made in the last decade in computing and control of the hybrid systems 

characterized by interactions between the continuous and discrete motions of the components. The 

computation, physical aspects and control incorporate both the discrete and continuous sequences [1-5]. 

Details on this issue are found in [6-11].  

In this paper, the dynamic differential logic algorithm (dL) is used to control the behavior of a 

cooperative surgeon-robot system having as main task the avoiding collisions with forbidden frontiers 

located in a known area [12-16]. A system with analog equipment is described by continuous equations, 

while a software system that processes the data, is described by discrete logic algorithms. An interface 

between these is realized by dL in order to control the motions and eliminate the unexpected situations [17, 

18]. The control of the cooperative surgeon-robot system consists in stopping the surgical instrument (SI) to 

reach the prohibited frontiers. The motion control in the null-space of the contact force control is performed 

in a space coordinate defined as the normal direction to the contact point in a minimal space coordinate. The 

contact identification is analyzed by checking of the minimum distance between two bodies. 

The algorithm dL performs the continuous dynamics described by differential equations which suffer 

perturbations and challenges due to uncertain boundary conditions. The model verification is an important 

step for performance and an efficient control [19]. 

The paper is organized as follows: Section 2 is devoted to description of the cooperative surgeon-robot 

system. The discrete and continuous behavior variables and the arithmetic operations handled by dL are 

presented in Section 3. The control of the motion trajectories of SI for different inputs and uncertain 

boundary conditions is presented in Section 4. The results are described in Section 5, while the conclusions 

are drawn in Section 6.   
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2. DESCRIPTION OF THE TASK 

A hybrid system combines instantaneous discrete jump dynamics with continuous motions. Fig. 1 

shows an example inspired from the train dynamics [1] with the acceleration a  which changes 

instantaneously by discrete control interventions at some points in time, and of the continuous evolution of 

velocity v  and the position z  of the train. The differential equations of the train behavior are 

,z v  v a  . 

 

Figure 1 - An example of discrete evolution of acceleration, of continuous evolution of velocity and the position of a train over time. 

In surgical interventions, the goal of the robot is to avoid SI to touch and intersect the prohibited 

frontiers in the working space   defined by coordinates ( , , )x y z , in order to help the surgeon to deal 

conflicting situations which could appear during surgical procedure on the SI trajectories to the final point T . 

The SI is viewed as the tip of a virtual joystick (red) (Fig.2). The surgeon hands freely the SI in    without 

robotic interventions, but, when SI located at the distance d  to  , is in contact with the prohibited area  

D d , the robot reduces the  SI speed proportionally to D  (Fig.1). 

 

Figure 2 - Two ways of avoiding the prohibited frontiers in the surgery control. 

The motion control in the null-space of the contact force control is performed in the space coordinate 
  defined as the normal direction to the contact point in a minimal space coordinate [21]. The contact is 

analyzed by checking of the minimum distance between two bodies [22,23] 

1 2 1 2 1 1 2 2

1
min ( ) ( ) ,  ( ) 0,   ( ) 0

2

Tr r r r f r f r
 

    
  ,                                                (1) 

where 1r  and 2r  are the position vectors of two points belonging to SI and tissue, respectively, and 1f  

and 2f  are bounding surface constraints, respectively 

1 1 1 2 2 2min( ),  ( ) ,   ( )
2 2

d d
d f r e f r e    

,                                                         (2) 

where d  is the interference distance, and 1e
 and 2e  are the unit vectors. We denote by J  and cn

 , the 

Jacobean and the contact normal vector 

c cJ n J
.                                                                        (3)  

The motion equations of the robot are [16] 

( ) ( , ) ( ) ( )T

c cA q q b q q g q J q f    
,                                                            (4)  
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where 1 2 3( , , )q q q q is the joint vector, with 1q  the rotation about X  -axis (pitch angle), 2q  the 

rotation about Y  -axis (roll angle) and 3q  the rotation about the axis Z  which is common with the  joystick 

axis (yaw angle), respectively, 
( )A q

 is the mass/inertia matrix, 
( , )b q q

is the Coriolis/centrifugal torque, and 
( )g q

is the gravity torque in the joint space, respectively.  

The vector of joint torques   is a sum between the control torque for the contact force control and the 

torque in the null space of the contact force control   

0

T T

c c cJ f N   
.                                                                 (5)  

The model of Hunt and Crossley (1975) is used for defining the contact force     
n p q

cf k b    
,                                                                (6) 

where , ,n p q  are constants, coefficient k  depends on the material and the geometric properties of the 

bodies in contact, and b is defined with respect to the coefficient of restitution 0 1e  , 01 2 / 3e b k  
 [24, 

25]. For 0b  , (6) reduces to the Hertz model. 

The uncertain boundary conditions attached to (4) are described by random perturbations that can have 

a significant impact on the results. However, the boundary conditions depend on the tissues conditions and 

the geometry. The boundary conditions can be modeled as a lognormal random field given by 

 ( , , , , , , ) exp ( ,j c c fK s d D F F x t Y x t
,                                                   (7)  

where x  is the spatial coordinate, ( , )Y x t  is a Gaussian random field with mean 0Y   and a 

correlation function ( , )YC x y  associated  to the variance 
2

Y   and the correlation lengths of the random field 

Y   

2 1 1 2 2 3 3

1 2 3

( , ) expY Y

x y x y x y
C x y

   
    

 


  
.                                       (8) 

3. DESCRIPTION OF dL 

The language dL is described by discrete and continuous state variables coupled by arithmetic 

operations: logical and a b ; logical or a b ; negation a ; existential and universal quantifications in R , 
( )xP x

and 
( )xP y

; a  satisfying the condition 
 [ ]a 

 satisfying 


 
a  

. The continuous motion is 

written as 1 1 2 2, ,... &n nx x x        completed with the assumption (
?

), the assignment   ( :i ix   ), 

the non-deterministic assignment of any value ( : *ix  ), the sequentially running a  and b  ( ;a b ), the non-

deterministic choice ( a b ) and the non-deterministic loop ( *a ) [1-5]. 

For example, an arbitrary input of a non-deterministic value to 
f

of dL is [26] 
ctrl ( : *;

( & 0)

( & ( 0) ( ))

( ( / ) & ( 0) ( )))*

f

r gf f

r gf f r D

r g r D f f r D

 

  

    

                                                    (13) 

The hybrid programs can combine discrete and continuous transitions to different structured control 

programs using the operators of Kleene algebras. For example, the simplified train control is written as  
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: ; / * * /

( (? ; , )

(? ; : ; : ;? 0)

(? ; , & 0)

( 1; : 5; : ))*

q accel initial mode is nodeaccel

q accel z v v a

q accel z s a b q brake v

q brake z v v a v

q brake v a a q accel



   

       

     

        

The SI is starting from a location 
( 0)r 

, continues his task in  , and its safety motion is written as 

 
( 0) [ctrl( 0)r r  

.                                                         (14) 

 The sequence (14) is the key of KeYmaera, a useful instrument that can check the safety property of 

the algorithm [2,5]. 

The constraints are modelled in linear or nonlinear inequalities over Boolean-valued variables 

 :: *

:: _ int | _ _

:: _ int | _ _

formula clause clause

clause linear consta s boolean var linear constraint

clause nonlinear consta s boolean var nonlinear constraint

 

  

   

4.  CONTROL OF CROSSING THE PROHIBITED BOUNDARIES 

The surgical robot built at the Johns Hopkins University Center for Integrated Surgical Systems and 

Technology Group [17, 18, 27, 28] is composed of three components: Stealth Station navigation unit that 

follow the position and orientation of the optical markers on the rigid body, the 3DSlicer unit for viewing 

and analyzing imaging data, and a 6-degree Neuromate robotic arm equipped with a Food & Drug 

Administration (FDA).   

We imagine to have such a robot in order to describe how to use dL for simulation, computation and 

control of such robot. When the surgeon applies a force f to SI, we have [6-8] 

d
( )

d

r
G f

t
 ,                                                                        (15) 

where 0r   describes the SI position in  , and G  a constant multiple of f . The analyze of SI trajectories 

and the crossing of a prohibited boundary  is done by applying the Greenwood and Novikov results [29-

31]. In the 1D case,   is bounded by a constant boundary g , 0g  , and the motion is described by 

0

1

n

n p

p

s s x


  ,                                                                    (16) 

with , 1px p  the state variables.  We suppose that SI reaches the prohibited border at the time gt   

 : min 1:g nt n s g    .                                                    (17) 

By checking the minimum distance between SI and   we identify the contact 

1 2 1 2

1
min ( ) ( )

2

Tr r r r
 

  
 

,                                                       (18) 

where 
1r  and 

2r  are the position of SI and the border, respectively. The class 2M R  of given motions of SI 

is generated by a genetic algorithm 

       : 0 1;| | 1 0 2;| | 1 1, 0 2, 0M                       ,         (19) 

The speed 
1r  is given by [26] 

  1 1 11
d

r r r n n
D

 
    

 
,                                                         (20) 
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where d  is the distance from SI to  with the normal 
1n .  

The control of crossing the prohibited frontiers is described by 

2

1 2

1 1 2 2

1 1 2 2

0 1 1 2 2

2

0

2

0

2

0
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g
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g
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g
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t
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

          

              (21) 

Here, the distance from   is d , the unit normal to   is 1n   and the velocity p  is given by the control 

law 

 1 1 11 ( )
d

p p p n n
D

 
      

 
 ,                                        (22) 

where p  is the speed of SI and dot product of two vectors is denoted by ”  ” .  

Most of the time, the surgeon manages freely the SI (green circle) without any robotic intervention 

(blue lines). Various situations with the surgeon's given trajectories in space are presented in Fig.3. The 

critical border   is the ends of   marked with red colour.   

When SI approaches  ,  the normal speed component to the border is reduced by the robot and slowly 

cancelled.  It is the case of the regions noted by A and B.  It is possible that some SI trajectories not to be 

defined ab initio, and to be instantly changed depending on local working conditions. Or, the inputs can be 

unclear and the measurement imperfect. Such situations are handled by intervention of the robot and the 

surgeon accepting.  
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Figure 3 -  Different SI trajectories in  .  

The implementation of hard or soft stops takes into account on the magnitude of the force and the 

distance to  , and verifies the condition do not slide across  . The proof of the control algorithm is a very 

important step in this simulation, and this must verify preconditions and also postconditions relative to initial 

set of different branches of the loop and its invariant. We add that in our case there are seven branches, one 

for each of the different input cases we considered. The control algorithm can be proved with respect to its 

safety using KeYmaera [12, 32].  

5.  CONCLUSIONS 

The differential dynamic logic dL is used in this paper for computation and control of a hybrid system 

with uncertain boundary data. The hybrid system is a cooperative surgeon-robot in which the coupling 

between the continuous motions of the surgeon and the discrete motions of the robot are incorporated in a 

single routine in which the computation, physical aspects and control are interacting. dL incorporates the 

discreet and the continuous behavior of the system, and the proposed algorithm is able to analyze possible 

uncertain boundary data attached to the model.  The uncertain boundary data are expressed as a lognormal 

random field.  

Acknowledgement 

This work was supported by a grant of the Romanian ministry of Research and Innovation, CCCDI–

UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017-0221/59PCCDI/2018 (IMPROVE), within PNCDI 

III. 



Veturia CHIROIU, Ligia MUNTEANU, Rodica IOAN, Valeria MOSNEGUTU, Iulian GIRIP 

ACTA ELECTROTECHNICA, Volume 60, Number 1-2, 2019, Special Issue, ISSN 2344-5637, ISSN-L 1841-3323 

64 

REFERENCES 

1. PLATZER, A., Logical analysis of hybrid systems- proving theorems for complex dynamics, Springer Verlag, Berlin Heidelberg, 

2010. 

2. PLATZER, A., Differential dynamic logics. automated theorem proving fir hybrid systems, PhD Thesis, Carl Von Ossientzky 

Universitat Oldenburg, 2008. 

3. PLATZER, A., Differential-algebraic dynamic logic for differential-algebraic programs, Journal of Logic and Computation, 20(1), 

309–352, 2010. 

4. PLATZER, A., A complete axiomatization of quantified differential dynamic logic for distributed hybrid systems, Logical 

Methods in Computer Science, 8(4), 1–44, 2012. 

5. PLATZER, A., Differential dynamic logic for hybrid systems, Journal of Automated Reasoning, 41(2), 143–189, 2008. 

6. DOWEK, G., MUNOZ, C., CARRENO, V.A., Provably safe coordinated strategy for distributed conflict resolution. In: 

Proceedings of the AIAA Guidance Navigation, and Control Conference and Exhibit 2005, AIAA-2005-6047, 2005. 

7. PLATZER, A., CLARKE, E.M., Computing differential invariants of hybrid systems as fixed points. In: Gupta and Malik, 176–

189, 2008.  

8. PLATZER, A., CLARKE, E.M., Computing differential invariants of hybrid systems as fixed points. Formal Methods in System 

Design 35(1), 98–120, 2009.  

9. GUPTA, A., MALIK, S. (eds.) Computer Aided Verification, CAV 2008, Princeton, NJ, USA, Proceedings, LNCS, vol. 5123, 

Springer, 208. 

10. GALDINO, A.L., MUNOZ, C., AYALA-RINCON, M., Formal verification of an optimal air traffic conflict resolution and 

recovery algorithm. In: D. Leivant, R. de Queiroz (eds.) WoLLIC, LNCS, vol. 4576, 177–188, Springer, 2007. 

11. HWANG, I., KIM, J., TOMLIN, C., Protocol-based conflict resolution for air traffic control, Air Traffic Control Quarterly 15(1), 

1–34, 2007. 

12. FRANZLE, M., HERDE, C., HYSAT: An efficient proof engine for bounded model checking of hybrid systems, Formal 

Methods in System Design, 30(2), 179–198, 2007. 

13. XIU, D., LUCOR, D., Su, C.H., KARNIADAKIS, G.E., Stochastic modeling of flow-structure interactions using generalized 

polynomill chaos, Division of Applied Mathematics, Brown University, Providence, 2001. 

14. HAREL, D., KOZEN, D., TIURYN, J., Dynamic logic, MIT Press, Cambridge, 2013. 

15.KOUSKOULAS, Y., Platzer, A., KAZANZIDES, P., Formal methods for robotic system control software, Johns Hopkins Appl. 

Technical Digest, 32(2), 490-498, 2013. 

16. CHIROIU, V., MUNTEANU, L., RUGINA, C., On the control of a cooperatively robotic system by using a hybrid logic 

algorithm, Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science, 

2018. 

17. TOADER, A., SIRETEANU, T., CHIROIU, V., DUMITRIU, D., Decentralized control of large scale systems, Research Trends 

in Mechanics, vol. 4, Publishing House of the Romanian Academy (eds. L.Munteanu, V.Chiroiu, T.Sireteanu),  340-368, 

2010. 

18. URSU, I., CHIROIU, V., MUNTEANU, Hysteresis modeling and feedforward control of a five-story system, Proc. of the 

Romanian Academy-Series A: Mathematics, Physics, Technical Sciences, Information Science, 13(1), 55-61, 2012. 

19. TAVERNINI, L., Differential automata and their discrete simulators, Non-Linear Anal. 11(6), 665–683, 1987. 

20. Chan Chang Chin-Boon, Ho Yvonne, Chui Chee-Kong, Automation of retinal surgery: A shared control robotic system for laser 

ablation, Proc. of the 2015 IEEE Int. Conf. on Information and Automation, 1957-1962, Lijiang, China, 2015. 

21. PARK, J., KHATIB, O., Robot multiple contact control, Robotica, 26, 667-677, 2008. 

22. KARNOPP, D., Computer simulation of stick-slip friction in mechanical dynamic systems, Journal of Dynamic Systems, 

Measurement, and Control, 107, 100–103, 1985. 

23. KRAMER, G., An introduction to auditory display. In: Kramer G (eds) In auditory display, pp 1–79 Addison-Wesley, Boston, 

MA, 1994. 

24. GILARDI, G., SHARF, I., Literature survey of contact dynamics modelling, Mechanism and Machine Theory, 37, 1213–1239, 

2002.  

25.VAN VLIET, J., SHARF, I., Ma, O., Experimental validation of contact dynamics simulation of constrained robotic tasks, The 

International Journal of Robotics Research, 19 (12), 1203–1217, 2000. 

26. KAZANZIDES, P., Virtual Fixture Computation, Note on Combining the Effects of Multiple Virtual Fixtures, 2011. 

27. BECKERT, B., PLATZER, A., Dynamic logic with non-rigid functions: A basis for object-oriented program varication, in Ulrich 

Furbach and Natarajan Shankar, editors, Automated reasoning, Third International Joint Conference, IJCAR 2006, Seattle, 

WA, USA, Proceedings, vol. 4130 of LNCS, 266-280, Springer Verlag, Berlin Heidelberg, 2006. 

28. ABBOTT, J., MARAYONG, P., OKAMURA, A., Haptic Virtual Fixtures for Robot-Assisted Manipulation, in Robotics 

Research. vol. 28, 49-64, S. Thrun, R. Brooks, and H. Durrant-Whyte, Eds., Springer Berlin Heidelberg, 2007. 

29. GREENWOOD, P.E., NOVIKOV, A.A., One-sided boundary crossing for processes with independent increments, Theory of 

Probability and its Applications, 31(2), 221-232, 1987. 

30. NOVIKOV, A.A., The martingale approach in problems on the time of the first crossing of nonlinear boundaries, Trudy 

Matematicheskogo Instituta imeni VA Steklova, 158, 130-152, 1981. 

31. NOVIKOV, A.A., On the moment of crossing the one-sided nonlinear boundary by sums of independent random variables, 

Theory of Probability and its Applications, 27, 688-702, 1983. 

32. PLATZER, A., QUESEL, J.D., KEYMAERA: A Hybrid Theorem Prover for Hybrid Systems, in Automated Reasoning: 4th Int. 

Joint Conf., Vol. 5195 of LNCS, A. Armando, P. Baumgartner, and G. Dowek (eds.), SpringerVerlag, Berlin Heidelberg, 

171–178, 2008. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwi6_NvJo8HcAhVKiaYKHUtpBUcQFjAAegQIARAB&url=http%3A%2F%2Fwww.mathnet.ru%2Feng%2Fbook1073&usg=AOvVaw1YMCY3DpO6NpcixvCKusBC
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwi6_NvJo8HcAhVKiaYKHUtpBUcQFjAAegQIARAB&url=http%3A%2F%2Fwww.mathnet.ru%2Feng%2Fbook1073&usg=AOvVaw1YMCY3DpO6NpcixvCKusBC

	Page 1

